◎正当な理由による書き込みの削除について:      生島英之とみられる方へ:

Inter-universal geometry と ABC予想 (応援スレ) 67 YouTube動画>2本 ->画像>5枚


動画、画像抽出 || この掲示板へ 類似スレ 掲示板一覧 人気スレ 動画人気順

このスレへの固定リンク: http://5chb.net/r/math/1653712154/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

1132人目の素数さん2022/05/28(土) 13:29:14.25ID:DzamZmOV
(前“応援”スレが、1000又は1000近くになったので、新スレ立てる)
前スレ:Inter-universal geometry と ABC予想 (応援スレ) 66
http://2chb.net/r/math/1651884405/
詳しいテンプレは、下記旧スレへのリンク先ご参照
Inter-universal geometry と ABC予想 (応援スレ) 52
http://2chb.net/r/math/1613784152/1-13

(参考)
https://twitter.com/math_jin
math_jin 出版序文リンク Andrew Putman 2021年3月6日
https://drive.google.com/file/d/1n1XMCNyQxswQGrxPIZnCCMx6wJka0ybh/view

望月Inter-universal Teichmuller theory (abbreviated as IUT) (下記)は、新しい局面に入りました。
査読が終り出版されました。また、“Explicit”版が公開され、査読は完了したようです。
IUTの4回の国際会議は無事終わり、Atsushi Shiho (Univ. Tokyo, Japan)先生が、参加したようです。
IUTが正しいことは、99%確定です。
このスレは、IUT応援スレとします。番号は前スレ43を継いでNo.44からの連番としています。
(なお、このスレは本体IUTスレの43からの分裂スレですが、実は 分裂したNo43スレの中では このスレ立ては最初だったのです!(^^;)

つづく
https://twitter.com/5chan_nel (5ch newer account)

2132人目の素数さん2022/05/28(土) 13:30:00.46ID:DzamZmOV
つづき

https://mainichi.jp/articles/20200403/k00/00m/040/295000c
望月教授「ABC予想」証明 斬新理論で数学界に「革命」 京大数理研「完全な論文」【松本光樹、福富智】毎日新聞2020年4月3日
(抜粋)
Inter-universal geometry と ABC予想 (応援スレ) 67 YouTube動画>2本 ->画像>5枚
会見には同研究所の柏原正樹特任教授と、玉川安騎男教授が出席。
2018年にはピーター・ショルツ独ボン大教授が望月論文に疑義を唱え、その行方に注目が集まった。玉川教授は「望月教授自身が反論もしており、(ショルツ教授からの)再反論もない」などとし、論文の価値判断に影響はないとの認識を示した。
玉川教授は「全く新しい理論で、さらなるインパクトを生み出す可能性がある。この研究所を中心として世界的に研究が活性化すれば喜ばしい」と胸を張った。


数学の難問ABC予想 京大教授が証明 30年以上未解決 2020/04/03 FNNプライムオンライン

つづく

3132人目の素数さん2022/05/28(土) 13:30:21.83ID:DzamZmOV
<IUT国際会議 2つのシリーズ>
1.
http://www.kurims.kyoto-u.ac.jp/~bcollas/IUT/IUT-schedule.html
RIMS
Promenade in Inter-Universal Teichmuller Theory
Org.: Collas (RIMS); Debes, Fresse (Lille).
The seminar takes place every two weeks on Thursday for 2 hours by Zoom 17:30-19:30, JP time (9:30-11:30, UK time; 10:30-12:30 FR time) ? we refer to the Programme for descriptions of the talks and associated references. http://www.kurims.kyoto-u.ac.jp/~bcollas/IUT/documents/RIMS-Lille%20-%20Promenade%20in%20Inter-Universal%20Teichm%C3%BCller%20Theory.pdf

つづく

4132人目の素数さん2022/05/28(土) 13:30:38.04ID:DzamZmOV
つづき

2.
https://www.kurims.kyoto-u.ac.jp/~motizuki/project-2021-japanese.html
宇宙際タイヒミューラー理論の拡がり
(4回とも無事終了です)
なお、東大の重鎮 Atsushi Shiho (Univ. Tokyo, Japan)先生
8月末~9月初めの二つのIUT会議に出席したようです

参考
https://www.maths.nottingham.ac.uk/plp/pmzibf/files/iut1.html
宇宙際タイヒミューラー理論への誘い(いざない)2021-08-31?2021-09-03
Confirmed participants include:
Atsushi Shiho (Univ. Tokyo, Japan),

https://www.maths.nottingham.ac.uk/plp/pmzibf/files/iut2.html
宇宙際タイヒミューラー理論サミット2021 2021-09-07?2021-09-10
Confirmed participants include:
Atsushi Shiho (Univ. Tokyo, Japan),

https://www.kurims.kyoto-u.ac.jp/~motizuki/research-japanese.html
望月 過去と現在の研究
https://www.kurims.kyoto-u.ac.jp/~motizuki/Invitation%20to%20view%20IUT%20workshop%20videos.pdf
20211117
世界の数学者に向けた、今年度の宇宙際タイヒミューラー理論関連集会のビデオ閲覧の招待状を掲載。

つづく

5132人目の素数さん2022/05/28(土) 13:31:02.88ID:DzamZmOV
つづき

<過去スレより再録>
スレ46 http://2chb.net/r/math/1589677271/273
アンチのみなさん、幼稚すぎ
小学生なみ
そういう議論は、本スレが アンチでお願いしますよ
ここでは、大人の議論をしましょうね

1.まず、論文の不正は、「医学・生命科学系の論文」に多い。だが、数学では、いまだ寡聞にして知らず。おそらく、これからも無いでしょう
2.「医学・生命科学系の論文」は、実験結果や診療の結果が記載されるのが普通で、ここは論文執筆者が、やろうと思えば捏造可能だ。しかし、数学では捏造の余地が皆無
 (これは、数学科学部卒でも同意してくれるだろう。同意できないのは、小学生です。どうぞ、本スレが アンチへ)
3.数学では捏造の余地が皆無で、もし意図して不自然なことをしても、すぐバレル。「おまえ、アホやなー」です
 あるいは、「わざと、ワケワカに書く」と小学生はいう。しかし、これも、誰も読めないなら、やっぱ「おまえ、アホやなー」です
4.査読者や、柏原・玉川がグルだとか、小学生はいう
 しかし、そんなことをしても、見る人が見れば、やっぱ「おまえら、アホやなー」です

ワケワカ小学生は、どうぞ相応しいスレへ お願いしますww(^^;

スレ46 http://2chb.net/r/math/1589677271/883
1.RIMSを まず 普通の論文と見れば良いと思うのだが? つまり、「ちゃんと査読された」ということを認める
2.21世紀の数学は、高度に専門家されているので、専門外の先端の論文を理解するのは一苦労する。ショルツ氏も例外ではない
3.数学の検証に終りがない。査読は一次の通過でしかない。掲載論文のさらなる 拡張 あるいは一般化が検討されるのが普通。あるいは、他の分野への応用とか。その過程で、論文の真偽は常に検証されるものだ

そういう普通の視点で考えれば宜しいのではないですかね?
応援スレだが、この普通のことしか言ってないけどねw(^^

アンチが
・査読が終わったのは、RIMS内部の陰謀だとか、内部でデタラメをやっているとか
・果ては、数学でSTAPもどきの捏造数学論文事件で、関係者が全員グルだとか

笑える幼稚な議論
それは、別スレでやれよw(^^;

6132人目の素数さん2022/05/28(土) 13:31:18.83ID:DzamZmOV
なお、
おサル=サイコパス*)のピエロ、不遇な「一石」、“鳥なき里のコウモリ”そのままで、“シッタカ”ぶり男で、アナーキストのアホ男です。
なお、IUTスレでは、「維新さん」と呼ばれることもあります。(突然“維新~!”と絶叫したりするからです(^^; )
( https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets**) (Yahoo!でのあだ名が、「一石」)
(**)注;https://en.wikipedia.org/wiki/Hyperboloid Hyperboloid
Hyperboloid of two sheets :Inter-universal geometry と ABC予想 (応援スレ) 67 YouTube動画>2本 ->画像>5枚
https://ja.wikipedia.org/wiki/%E5%8F%8C%E6%9B%B2%E9%9D%A2 双曲面
二葉双曲面 :Inter-universal geometry と ABC予想 (応援スレ) 67 YouTube動画>2本 ->画像>5枚
おサル、あいつは 双曲幾何の修論でも書いたみたいだなw(^^)

<*)サイコパスの特徴>
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
http://kotowaza-allguide.com/to/torinakisatonokoumori.html#:~:text=%E9%B3%A5%E3%81%AA%E3%81%8D%E9%87%8C%E3%81%AE%E8%9D%99%E8%9D%A0%E3%81%A8%E3%81%AF%E3%80%81%E3%81%99%E3%81%90%E3%82%8C%E3%81%9F%E8%80%85,%E3%81%A6%E3%81%84%E3%82%8B%E3%81%93%E3%81%A8%E3%81%AE%E3%81%9F%E3%81%A8%E3%81%88%E3%80%82
鳥なき里の蝙蝠 故事ことわざ辞典
【読み】 とりなきさとのこうもり
【意味】 鳥なき里の蝙蝠とは、すぐれた者がいないところでは、つまらぬ者が威張っていることのたとえ。
つづく

7132人目の素数さん2022/05/28(土) 13:31:37.14ID:DzamZmOV
つづき
<サイコパスのおサルのバカ発言>
過去スレ55 http://2chb.net/r/math/1623558298/813
813 名前:132人目の素数さん[sage] 投稿日:2021/06/24(木) 20:41:12.45 ID:mlJli1k0 [7/7]
>>789-790
(引用開始)
数学における日本とかいう野蛮な島のジコチュウ●チガイの系譜
オカ、シムラ、モチヅキ
>"intellectual debt"
確かにモチヅキは数学界に対して「知的負債」を負ってるね
自分の思いつきが論理的に正しいことを示す、という負債をね
(引用終り)
1.「数学における日本とかいう野蛮な島のジコチュウ●チガイの系譜 オカ、シムラ、モチヅキ」
 てめえ、何様のつもりだ? 5ch数学板で便所の落書きしている数学落ちこぼれさんでしょ
 何をえらそうに!
2.「確かにモチヅキは数学界に対して「知的負債」を負ってるね
 自分の思いつきが論理的に正しいことを示す、という負債をね」
 てめえ、何様のつもりだ?
 論文書いて、査読してもらって、真摯に対応して査読を通してもらって出版してもらう
 ここまでは、終わったのです(^^
3.そして、今年6月末から4回の国際会議で、
 IUT普及の義務を果たします
4.おサルが理解できるように?
 それは無理!
 ”(スレ55 http://2chb.net/r/math/1623558298/158より)
 <上昇列 0<・・・<ω が有限列にしかなり得ない
 ことも分からん「考えなしの素人」に数学はムリ”
などという
 これじゃ。三歳児レベルの知能じゃんかw
 このおサルには、IUTは百年早いぜw(^^;
(引用終り) 以上

なお、
低脳幼稚園児のAAお絵かき
小学レベルとバカプロ固定
低脳で幼稚なカキコ

上記は、お断りです!!
小学生がいますので、18金(禁)よろしくね!(^^

つづく

8132人目の素数さん2022/05/28(土) 13:32:22.33ID:DzamZmOV
つづき
(参考)
関連: 望月新一(数理研) http://www.kurims.kyoto-u.ac.jp/~motizuki/
News - Ivan Fesenko https://www.maths.nottingham.ac.uk/plp/pmzibf/nov.html
Explicit estimates in inter-universal Teichmuller theory, by S. Mochizuki, I. Fesenko, Y. Hoshi, A. Minamide, W. Porowski, RIMS preprint in November 2020, updated in June 2021, accepted for publication in September 2021
https://ivanfesenko.org/wp-content/uploads/2021/11/Explicit-estimates-in-IUT.pdf NEW!! (2020-11-30) いわゆる南出論文(5人論文)
より
P4
Theorem A. (Effective versions of ABC/Szpiro inequalities over mono-complex number fields)
Theorem B. (Effective version of a conjecture of Szpiro)
Corollary C. (Application to “Fermat’s Last Theorem”)
P56
Corollary 5.9. (Application to a generalized version of “Fermat’s Last Theorem”)
Let l, m, n be positive integers such that
min{l, m, n} > max{2.453 ・ 10^30, log2 ||rst||C, 10 + 5 log2(rad(rst))}.
Then there does not exist any triple (x, y, z) ∈ S of coprime [i.e., the set of
prime numbers which divide x, y, and z is empty] integers that satisfies the equation

つまり、元祖フェルマー x^l + y^m + z^n = 0→拡張フェルマー rx^l + sy^m + tz^n = 0 もIUTで解けたんだ

Theorem Bで、Effective ”Szpiro”も出る
但し、”effective versions of the Vojta”への言及がないので、Vojtaは 未だみたい
ここ、一山当てる狙い目かもねw
他に、IUT関連
・[R8] Higher adelic theory, talk at the Como School, September 2021 https://ivanfesenko.org/wp-content/uploads/2021/10/hat.pdf
・[R7] IUT and modern number theory, talk at the RIMS workshop on IUT Summit, September 2021 https://ivanfesenko.org/wp-content/uploads/2021/10/mntiut.pdf
? [R5] Class field theory, its three main generalisations, and applications, May 2021, EMS Surveys 8(2021) 107-133 https://ivanfesenko.org/wp-content/uploads/2021/10/232.pdf

つづく

9132人目の素数さん2022/05/28(土) 13:32:41.02ID:DzamZmOV
つづき

・[R4] On asymptotic equivalence of classes of elliptic curves over Q , November 2020 https://ivanfesenko.org/wp-content/uploads/2021/10/asym2-1.pdf

http://www.kurims.kyoto-u.ac.jp/~motizuki/Essential%20Logical%20Structure%20of%20Inter-universal%20Teichmuller%20Theory.pdf
<PRIMS出版記念論文>
[9] On the Essential Logical Structure of Inter-universal Teichmuller Theory in Terms of Logical AND "∧"/ Logical OR "∨" Relations: Report on the Occasion of the Publication of the Four Main Papers on Inter-universal Teichmuller Theory. PDF NEW!! (2021-03-06)


新一の「心の一票」 - 楽天ブログ shinichi0329/ (URLが通らないので検索たのむ)
math jin:(IUTT情報サイト)ツイッター math_jin (URLが通らないので検索たのむ)

https://twitter.com/hoshiyuichiro
星裕一郎 ツイッター
http://www.kurims.kyoto-u.ac.jp/~yuichiro/papers.html
星裕一郎の論文
(抜粋)
宇宙際 Teichmuller 理論入門 PDF (2019) (Indexあり)https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/244783
続・宇宙際 Teichmuller 理論入門 PDF (2018) (Indexあり) https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/244746

http://www.kurims.kyoto-u.ac.jp/~gokun/
Go YAMASHITA (gokun)
http://www.kurims.kyoto-u.ac.jp/~gokun/myworks.html
山下剛サーベイ http://www.kurims.kyoto-u.ac.jp/~gokun/DOCUMENTS/abc2019Jul5.pdf (Indexが充実しているので、IUT辞書として使える)
A proof of the abc conjecture after Mochizuki.preprint. Go Yamashita last updated on 8/July/2019.

つづく
https://twitter.com/5chan_nel (5ch newer account)

10132人目の素数さん2022/05/28(土) 13:32:58.71ID:DzamZmOV
つづき

Yourpedia 宇宙際タイヒミュラー理論 (URLが通らないので検索たのむ)
https://ja.wikipedia.org/wiki/%E5%AE%87%E5%AE%99%E9%9A%9B%E3%82%BF%E3%82%A4%E3%83%92%E3%83%9F%E3%83%A5%E3%83%A9%E3%83%BC%E7%90%86%E8%AB%96 宇宙際タイヒミュラー理論 Wikipedia
https://en.wikipedia.org/wiki/Inter-universal_Teichm%C3%BCller_theory 英Inter-universal Teichmuller theory 英 Wikipedia
https://ja.wikipedia.org/wiki/ABC%E4%BA%88%E6%83%B3 ABC予想
https://en.wikipedia.org/wiki/Abc_conjecture 英abc conjecture


https://www.math.arizona.edu/~kirti/ から Recent Research へ入る
Kirti Joshi Recent Research論文集
新論文(IUTに着想を得た新理論) https://arxiv.org/pdf/2106.11452.pdf
Construction of Arithmetic Teichmuller Spaces and some applications
Preliminary version for comments Kirti Joshi June 23, 2021

https://www.uvm.edu/~tdupuy/papers.html
[ Taylor Dupuy's Homepage] 論文集
なお、(メモ)TAYLOR DUPUYは、arxiv投稿で [SS17]を潰した(下記)
https://arxiv.org/pdf/2004.13108.pdf
PROBABILISTIC SZPIRO, BABY SZPIRO, AND EXPLICIT SZPIRO FROM MOCHIZUKI’S COROLLARY 3.12
TAYLOR DUPUY AND ANTON HILADO Date: April 30, 2020.
P14
Remark 3.8.3. (1) The assertion of [SS17, pg 10] is that (3.3) is the only relation between
the q-pilot and Θ-pilot degrees. The assertion of [Moc18, C14] is that [SS17, pg 10] is
not what occurs in [Moc15a]. The reasoning of [SS17, pg 10] is something like what
follows:

つづく

11132人目の素数さん2022/05/28(土) 13:33:22.12ID:DzamZmOV
つづき

P15
(2) We would like to point out that the diagram on page 10 of [SS17] is very similar to
the diagram on §8.4 part 7, page 76 of the unpublished manuscript [Tan18] which
Scholze and Stix were reading while preparing [SS17].
References
[SS17] Peter Scholze and Jakob Stix, Why abc is still a conjecture., 2017. 1, 1, 1e, 2, 7.5.3 ( https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf Date: July 16, 2018.
https://ncatlab.org/nlab/files/why_abc_is_still_a_conjecture.pdf Date: August 23, 2018. )
[Tan18] Fucheng Tan, Note on IUT, 2018. 1, 2

なお
"[SS17] Peter Scholze and Jakob Stix, Why abc is still a conjecture., 2017."は、2018の気がする
”[Tan18] Fucheng Tan, Note on IUT, 2018. 1, 2”が見つからない。”the unpublished manuscript [Tan18]”とはあるのだが(^^
代わりに、ヒットした下記でも、どぞ (2018の何月かが不明だが、2018.3のSS以降かも)

つづく

12132人目の素数さん2022/05/28(土) 13:33:43.86ID:DzamZmOV
つづき

http://www.kurims.kyoto-u.ac.jp/~motizuki/Tan%20---%20Introduction%20to%20inter-universal%20Teichmuller%20theory%20(slides).pdf
Introduction to Inter-universal Teichm¨uller theory
Fucheng Tan RIMS, Kyoto University 2018
To my limited experiences, the following seem to be an option for people who wish to get to
know IUT without spending too much time on all the details.
・ Regard the anabelian results and the general theory of Frobenioids as blackbox.
・ Proceed to read Sections 1, 2 of [EtTh], which is the basis of IUT.
・ Read [IUT-I] and [IUT-II] (briefly), so as to know the basic definitions.
・ Read [IUT-III] carefully. To make sense of the various definitions/constructions in the
second half of [IUT-III], one needs all the previous definitions/results.
・ The results in [IUT-IV] were in fact discovered first. Section 1 of [IUT-IV] allows one to
see the construction in [IUT-III] in a rather concrete way, hence can be read together with [IUT-III], or even before.
S. Mochizuki, The ´etale theta function and its Frobenioid-theoretic manifestations.
S. Mochizuki, Inter-universal Teichm¨uller Theory I, II, III, IV.

http://www.kurims.kyoto-u.ac.jp/daigakuin/Tan.pdf
教員名: 譚 福成(Tan, Fucheng)
P-adic Hodge theory plays an essential role in Mochizuki's proof of Grothendieck's
Anabelian Conjecture. Recently, I have been studying anabeian geometry and
Mochizuki's Inter-universal Teichmuller theory, which is in certain sense a global
simulation of p-adic comparison theorem.

つづく

13132人目の素数さん2022/05/28(土) 13:34:01.40ID:DzamZmOV
つづき

<IUTと類体論>
https://ja.wikipedia.org/wiki/%E5%AE%87%E5%AE%99%E9%9A%9B%E3%82%BF%E3%82%A4%E3%83%92%E3%83%9F%E3%83%A5%E3%83%A9%E3%83%BC%E7%90%86%E8%AB%96#cite_note-3
宇宙際タイヒミュラー理論
数論的 log Scheme 圏論的表示の構成等に続いた研究であり、「一点抜き楕円曲線付き数体」の「数論的タイヒミューラー変形」を遠アーベル幾何等を用いて「計算」する数論幾何学の理論である。イヴァン・フェセンコはIU幾何を遠アーベル幾何から派生した新たな類体論に位置付けている

https://www.maths.nottingham.ac.uk/plp/pmzibf/mp.html
Ivan Fesenko - Research in texts
https://www.maths.nottingham.ac.uk/plp/pmzibf/232.pdf
[R5] Class field theory, its three main generalisations, and applications pdf, May 2021

P16の後半に面白い図がある

コピーペースト下記
Here are some relations between the three generalisations of CFT and their further developments:

2dLC?-- 2dAAG--- IUT
 l   /  |     |
 l  /    |     |
 l/      |     |
 LC    2dCFT  anabelian geometry
 \      |     /
   \     |   /
    \   |  /
        CFT
注)記号:
Class Field Theory (CFT), Langlands correspondences (LC), 2dAAG = 2d adelic analysis and geometry, two-dimensional (2d)
(P8 "These generalisations use fundamental groups: the etale fundamental group in anabelian geometry, representations of the etale fundamental group (thus, forgetting something very essential about the full fundamental group) in Langlands correspondences and the (abelian) motivic A1 fundamental group (i.e. Milnor K2) in two-dimensional (2d) higher class field theory.")
https://www.kurims.kyoto-u.ac.jp/~motizuki/ExpHorizIUT21/WS4/documents/Fesenko%20-%20IUT%20and%20modern%20number%20theory.pdf
Fesenko IUT and modern number theory
つづく

14132人目の素数さん2022/05/28(土) 13:34:22.55ID:DzamZmOV
つづき

(IUTに対する批判的レビュー)
https://zbmath.org/07317908
https://zbmath.org/pdf/07317908.pdf
Mochizuki, Shinichi
Inter-universal Teichmuller theory. I: Construction of Hodge theaters. (English) Zbl 07317908
Publ. Res. Inst. Math. Sci. 57, No. 1-2, 3-207 (2021).
Reviewer: Peter Scholze (Bonn)

BuzzardのICM22講演原稿
Inter-universal geometry とABC 予想47
http://2chb.net/r/math/1635332056/84
84 名前:38[] 投稿日:2021/12/23(木) 19:42:33.42 ID:iz9G4jw+ [1/2]
Buzzardの原稿が出たヨ!
https://arxiv.org/abs/2112.11598
>A great example is Mochizuki’s claimed proof of the ABC conjecture [Moc21].
>This proof has now been published in a serious research journal, however
>it is clear that it is not accepted by the mathematical community in general.

86 名前:132人目の素数さん[] 投稿日:2021/12/23(木) 20:46:56.21 ID:a0F2ZqKI
>>84
ホントに出ていたね。その引用部分の少し後に次のことが書かれている。
Furthermore, the key sticking point right now is that the unbelievers argue that more details are needed in the proof of Corollary 3.12 in the main paper,
and the state of the art right now is simply that one cannot begin to formalise this corollary without access to these details in some form
(for example a paper proof containing far more information about the argument)
(引用終り)

”Comments: 28 pages, companion paper to ICM 2022 talk”と明記もあるね
思うに、その意図は、「反論あるなら言ってきてね。反論の機会を与える。反論なき場合はこのまま総会発表とする」ってことか
(西洋流で、「黙っていたから 認めたってことじゃん」みたいなw)
普通は、こんな形でプレプリ出さない気がするな
さあ、面白くなってきたかも
ドンパチ派手にやってほしい

つづく

15132人目の素数さん2022/05/28(土) 13:34:46.69ID:DzamZmOV
つづき

なお、下記 IUTの系3.11を肯定する書評 サイディのレビュー と、それに関連するwoit氏のブログを転載しておきます
Inter-universal geometry と ABC予想 (応援スレ) 65
http://2chb.net/r/math/1644632425/567
567 名前:132人目の素数さん[] 投稿日:2022/04/24(日) 14:12:10.98 ID:w4K+s4Bs
Math Reviews誌が、
英エクスター大教授モハメド・サイディのレビューで、
宇宙際タイヒミュラー理論の系3.11を肯定する書評を掲載したって。
American Mathematical Societyだね。

https://www.math.columbia.edu/~woit/wordpress/?p=12775
Not Even Wrong
Various and Sundry
Posted on April 18, 2022 by woit
Last week a review of the Mochizuki IUT papers appeared at Math Reviews, written by Mohamed Saidi. His discussion of the critical part of the proof is limited to:
Theorem 3.11 in Part III is somehow reinterpreted in Corollary 3.12 of the same paper in a way that relates to the kind of diophantine inequalities one wishes to prove. One constructs certain arithmetic line bundles of interest within each theatre, a theta version and a q-version (which at the places of bad reduction arises essentially from the q-parameter of the corresponding Tate curve), which give rise to certain theta and q-objects in certain (products of) Frobenioids: the theta and q-pilots. By construction the theta pilot maps to the q-pilot via the horizontal link in the log-theta lattice. One can then proceed and compare the log-volumes of the images of these two objects in the relevant objects constructed via the multiradial algorithm in Theorem 3.11.

Saidi gives no indication that any one has ever raised any issues about the proof of Corollary 3.12, with no mention at all of the detailed Scholze/Stix criticism that this argument is incorrect. In particular, in his Zentralblatt review Scholze writes:

つづく

16132人目の素数さん2022/05/28(土) 13:35:42.50ID:DzamZmOV
つづき

Unfortunately, the argument given for Corollary 3.12 is not a proof, and the theory built in these papers is clearly insufficient to prove the ABC conjecture….
In any case, at some point in the proof of Corollary 3.12, things are so obfuscated that it is completely unclear whether some object refers to the q-values or the -values, as it is somehow claimed to be definitionally equal to both of them, up to some blurring of course, and hence you get the desired result.

After the Saidi review appeared, I gather that an intervention with the Math Reviews editors was staged, leading to the addition at the end of the review of

Editor’s note: For an alternative review of the IUT papers, in particular a critique of the key Corollary 3.12 in Part III, we refer the reader to the review by Scholze in zbMATH: https://zbmath.org/1465.14002.

Since the early days of people trying to understand the claimed proof, Mochizuki has pointed to Saidi as an example of someone who has understood and vouched for the proof (see here). Saidi is undoubtedly well aware of the Scholze argument and his decision not to mention it in the review makes clear that he has no counter-argument. The current state of affairs with the Mochizuki proof is that no one who claims to understand the proof of Corollary 3.12 can provide a counter-argument to Scholze. Saidi tries to deal with this by pretending the Scholze argument doesn’t exist, while Mochizuki’s (and Fesenko’s) approach has been to argue that Scholze should be ignored since he’s an incompetent. The editors at PRIMS claim that referees have considered the argument, but say they can’t make anything public. This situation makes very clear that there currently is no proof of abc.

つづく

17132人目の素数さん2022/05/28(土) 13:36:08.20ID:DzamZmOV
つづき

https://www.nhk.jp/p/special/ts/2NY2QQLPM3/blog/bl/pneAjJR3gn/bp/pzwyDRbMwp/
NHKスペシャル
数学者は宇宙をつなげるか?abc予想証明をめぐる数奇な物語(前編)2022年4月10日
https://plaza.rakuten.co.jp/shinichi0329/
2022.05.02 新一の心の一票
2022年4月のNHKスペシャルに対する「合格発表」: 前半はぎりぎり合格、後半は不合格

取り敢えずこんなところで(^^

18132人目の素数さん2022/05/28(土) 17:00:58.21ID:DzamZmOV
脱線ですが、わんこらさん
このYoutube いいわ
面白かったな



どうやってニートから立ち直ったのか?留年繰り返した末に大学院も全て落ちてニートへ
180,859 回視聴 2020/09/15 前回の大学の数学で挫折してたどりついた勉強法の動画
わんこらチャンネル

maracay
1 年前
もう8年前の話ですがわんこら式で苦手だった数学でセンター9割とりました。後悔で終わらずその勉強法をブログや YouTubeで発信するという行動に移したことが素晴らしいと思います。本当に感謝してます。

NaKaNoBa
1 年前
感動しましたよ、わんこらさん。
私は京大の文系学部卒ですが、いろいろあって今はなかなか人に言えない境遇におかれてしまってます。
わんこらさんの「前向き動画」から勇気と自信をもらいたいと思うので、これからも発信し続けてください。

Matt Song
8 か月前
こんにちは。この動画に巡り会えたのは、とても有難いことだと思いました。
好きなことを貫こうとするのは大変なことだと思うとともに、わんこらさんの粘り強い生き方はいろんな人ヘの励ましになると思います。

けん
1 年前(編集済み)
8年ほど前ですが、大学数学の勉強に苦戦していたときにわんこら式に出会い、なんとか卒業できました。
(かずゆきさんのセミナーにも参加させていただきました)
遅ればせながらありがとうございます!
多くの挫折を経験しても乗り越えていくかずゆきさんの生き方、かっこいいと思います。そういう姿勢が生徒さんに勇気を与えたりしてるんでしょうね。
陰ながら応援しています!
ふにゅ??!!!

19132人目の素数さん2022/05/28(土) 23:10:47.44ID:DzamZmOV
前スレより、数学が応用面からの刺激を受けて発展する話の例

前スレ 879 > https://www.kurims.kyoto-u.ac.jp/~nakajima/TeX/osaka2006.pdf 数学と物理学の絡み合い 中島 啓 京都大学大学院理学研究科 大阪大学理学部 「理学への招待」2006 年 7 月 7 日
同 887 > https://www.kitasato-u.ac.jp/sci/resea/buturi/hisenkei/sogo/mathphys.pdf 数学と物理学のあいだ 北里大学 理学部 物理 十河 清 (「1995 年度八王子数学ジュニア・セミナー夏の学校」における高校生向け講義レジュメ)

だいたい上記に書いてあるけど
さらに例示を挙げれば下記など

・フーリエ級数展開は、フーリエ氏が熱伝導の計算から出てきた
・現代確率論、確率過程論は、おそらくアインシュタインのブラウン運動の論文からの刺激からだろう
・ノイマンの無限次元ヒルベルト空間理論は、量子力学の定式化のため
・ソリトン理論=可積分系 は、物理のソリトン現象の解析のため
・数学のミラー対称性理論は、超弦理論のミラー対称性から
・三次元ポアンカレ予想解決で使われた、リッチフローは4次元時空 アインシュタインの相対性理論のテンソル解析から

20132人目の素数さん2022/05/28(土) 23:48:32.01ID:Us7eZQil
ソリトン理論と可積分系は同一ではないよ。
頭悪くて品性がないね。

21132人目の素数さん2022/05/29(日) 01:20:40.26ID:PoC8ZenQ
長期IUTスレ荒らし 天羽 優子 @apj とは…
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
22年前からネットハラスメント常習者だった証拠がネット上の各所に残っており、職場各部門・職場トップ及び監督官庁・法務省に再三の迷惑通報が為されているネット異常者 (※ ソースはインターネットやネットニュースの公開情報で確認可能)

【特徴1】ソース Inter-universal geometry と ABC予想 (応援スレ) 67 YouTube動画>2本 ->画像>5枚 Inter-universal geometry と ABC予想 (応援スレ) 67 YouTube動画>2本 ->画像>5枚 ※ 上記写真はみなし国家公務員=国立大学法人職員=公人の公開イベントで撮影され公開済みの写真でありその「所属機関」と「役職」の目的と使命に鑑みて、これら写真の参照は国民の行政監視の権利を満たしている。

【事例1】天羽 優子 @apjは2000年当時からネットハラスメント常習犯として有名
[ソース] fj.soc.law 2000/2/17 17:00のスレッド https://groups.google.com/g/fj.soc.law/c/oEr_UCdvnTg/m/IerWI2I7OREJ

【事例2】天羽 優子 @apjは2008年に自身が担当する実験講義学生を係争相手業者と誤認し誤爆ハラスメント問題を起こし、被害者学生が身元を明かして誤爆だと判明した後もネットハラスメントを継続した
[ソース] 山形大学・天羽准教授による鬱への差別 (過去ログ) http://2chb.net/r/mental/1212628738/

【事例3】自称 天羽 優子 は2017年にレコード大賞受賞者に対し誹謗中傷を行なった末に逆ギレし、親告罪スラップ訴訟恫喝をした。法務省担当部署はそれを、匿名の長期誹謗中傷犯が自身の身元を明かす訴訟を起こすと称する無効な恫喝だと説明した
[ソース] J-WAVE 81.3FM (76) [無断転載禁止](過去ログ) http://2chb.net/r/am/1503813609/912 http://2chb.net/r/am/1503813609/925 http://2chb.net/r/am/1503813609/948

22132人目の素数さん2022/05/29(日) 01:21:39.65ID:oRx2uX+l
二セ科学批判力ルト
底辺准教
が多用する特異語

1. ニ セ 科 学 | エ セ 科 学 | 疑 似 科 学
2. ト ン デ モ | ペ テ ン 師 | デ マ | ウ ソ | 詭 弁 | 病 気
3. 信 者 | 信 奉 者 | 教 祖 | 信 じ る
4. 負 け を 認 め て 黙 れ
5. 自 殺 | 氏 ね
6. 自 分 が 本 当 の 被 害 者
7. 月 刊 ム ー | オ カ ル ト | 宇 宙 人
8. 理 研 | S T A P 細 胞 | 小 保 方 | オ ボ カ タ
9. 岡 崎 | 丘 裂 き | 生 物 多 様 性
10. h i s s i . o r g | ウ ィ キ ペ デ ィ ア (w i k i p e d i a)
11. 悪 魔 の 証 明
12. キ チ ガ イ | 統 合 失 調
13. 常 温 核 融 合 | 凝 縮 系 核 反 応 | 新 元 素 変 換
14. 高 温 超 伝 導 | ヘ ン ド リ ッ ク ・ シ ェ ー ン
15. 時 限 爆 弾 | 地 雷 | 反 社 会 的
16. 正 義 | 正 義 の 味 方

23132人目の素数さん2022/05/29(日) 02:32:52.65ID:hduL16o0
案外❤かわいい😍

🐌 🇺🇦💕ま ゆ ゆ ん ゆ ん💗🇯🇵🐌

24132人目の素数さん2022/05/29(日) 02:43:55.96ID:bHmmKHVZ
無能の人が>>20でダメ押しされ>>21で発狂したのか?
真夜中に

25132人目の素数さん2022/05/29(日) 08:12:59.05ID:oBKRY8LS
>>20
>ソリトン理論と可積分系は同一ではないよ。

ご指摘ありがとうございます。
そうだね

 >>20 訂正
・ソリトン理論=可積分系 は、物理のソリトン現象の解析のため
 ↓
・ソリトン理論⊂可積分系 は、物理のソリトン現象の解析のため

とでもしますか

(参考)
https://ja.wikipedia.org/wiki/%E3%82%BD%E3%83%AA%E3%83%88%E3%83%B3
ソリトン(英: soliton)は、おおまかにいって非線形方程式に従う孤立波で、次の条件を満たす安定したパルス状の波動のことである。
https://en.wikipedia.org/wiki/Soliton
Soliton
3 History
In 1965 Norman Zabusky of Bell Labs and Martin Kruskal of Princeton University first demonstrated soliton behavior in media subject to the Korteweg?de Vries equation (KdV equation) in a computational investigation using a finite difference approach. They also showed how this behavior explained the puzzling earlier work of Fermi, Pasta, Ulam, and Tsingou.[6]
https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A7%E3%83%AB%E3%83%9F%E3%83%BB%E3%83%91%E3%82%B9%E3%82%BF%E3%83%BB%E3%82%A6%E3%83%A9%E3%83%A0%E3%81%AE%E5%95%8F%E9%A1%8C
フェルミ・パスタ・ウラムの問題
当初の予想では相互作用が非線形な系ではエルゴード性(英語版)によって、長時間経過後に各モードにエネルギーが等分配された熱力学的平衡状態に達するはずであったが、計算機実験の結果はそれに反し、初期状態のモードに戻る再帰現象が観測された。後に、この再帰現象はKdV方程式の研究から可積分系におけるソリトンと関連した現象であることが明らかにされた。なお、電子計算機が物理学の研究に活用された初期の事例としても有名である。

https://ja.wikipedia.org/wiki/%E5%8F%AF%E7%A9%8D%E5%88%86%E7%B3%BB
可積分系
ソリトンと逆散乱法
1960年代の遅く、(浅い水の流れで 1次元非散逸流体力学を記述する)KdV方程式において、強い安定性を持ったソリトンが偏微分方程式の局所化された解として発見された[8]。この発見により、これらの方程式を無限次元可積分であるハミルトン系として見なすことで、古典可積分係への関心が復活した。

26132人目の素数さん2022/05/29(日) 17:27:54.70ID:zVY0hdCm
>>7
><上昇列 0<・・・<ω が有限列にしかなり得ない
<ωの左隣まだですか?

27132人目の素数さん2022/05/29(日) 18:01:03.11ID:4Ub/9RhB
>>26
ω-1

28132人目の素数さん2022/05/29(日) 18:06:12.35ID:evfDi1zh
順序数の引き算きたー

29132人目の素数さん2022/05/30(月) 07:28:51.33ID:MglcMLvz
スレ主です
前スレ より
http://2chb.net/r/math/1651884405/958-959
958 名前:132人目の素数さん[sage] 投稿日:2022/05/29 ID:ap+nBya2
てかお前らリーマン面なんか使った事ないやろ?
じゃあ試しにコレできるんか?
やってみ
fを単位円Δ上定義された正則関数で0,1の値を取らないとする
このときΔ上の正則関数gでf(z) = exp(2πicosh(z))を満たすものがとれる
リーマン面の話題が出てたからちょっと復習の意味も込めて教科書読み直してみつけた話
Schottkyの定理の証明の最初の入り口
リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話
できるんか?

959 名前:132人目の素数さん[sage] 投稿日:2022/05/29 ID:quPuiUec
f(z) = exp(2πicosh(g(z)))

実際に重要な定理の証明で使われてる話で無理クリ出てきた問題ではない
リーマン面の基本的な扱いがわかってるなら5分あれば解答書ける
このレベルすらお前できんやろ?
(引用終り)

つづく

30132人目の素数さん2022/05/30(月) 07:33:00.17ID:MglcMLvz
>>29
つづき

1)これは、数理論理君という人なんだけど
 (以下前スレへのリンクは無し、番号のみとする)
2)これへの解答は、前スレの 965 以下で展開しているけど、なるほど、凄いとおもったよ。尊敬するわ
3)私のコメントは、964だけど、「下に訂正してるのに意図的に無視する」とか965で言うけど、
 分からんよね訂正ってw。 そもそも上記958と959って別人でしょ、普通は。リンクも省略しているし
4)で、979氏が「降参するんで証明が出てる本教えて 理解できるかどうかわからんけど」というくらい難しいらしい
 979氏は、981で「肝心の箇所は第7章? ああこら難しそうやな」と一瞬で見抜いた凄い人です(書名を聞いて検索で目次見て第7章?とか)
 なので、”リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話”ではないよね
5)実際、965 以下では、リーマン面の定義とか、全然使ってないしw
 そもそも、リーマン面の正確な定義は下記の小平にあるように、ワイル氏が1913 年に公表した
 一方、Schottkyの定理1904年、ピカールの定理 1878年に小定理が、1886年に大定理
 この3つとも、リーマン面のワイル氏の定義前の定理じゃん
6)前スレ 980で、「複素関数概説 黒田正 共立出版」を挙げているけど、そこに載っている証明は、おそらくは原証明そのものではない
 多分、ワイル氏 1913年以降に発展した 理論を使っていると思う(例えば、下記 英wikipedia Riemann surface の ”5 Classification of Riemann surfaces”あるいは次の6とかでしょ。普遍被覆とか)
7)ともかく、上記のようにケアレスミス多い。そもそも、問題文からして間違えるし、解答も2回訂正入ったし。それって、前スレの 935に書いた通りで 言い訳せず 直せってこと
 そして、今回もあなたがリーマン面を勉強していることは分かったけど、上記の問題は ワイル氏のリーマン面の正確な定義は」無しで解けるんでしょ? (時系列から見て) なので、出題の意図も外れ
8)ともかく、超幾何関数でもなんでもいいから、1つ査読論文を経験しなよ。そしたら「IUTが学部4年で理解できるように書くべき」なんて、アホな意見言わなくなるよ
 1つ査読論文を通してから、IUT論文について意見を言うようにお願いしますよ
以上

つづく

31132人目の素数さん2022/05/30(月) 07:34:08.21ID:MglcMLvz
>>30
つづき
(参考)
https://www.iwanami.co.jp/book/b265484.html
小平邦彦が拓いた数学 上野 健爾 著 2015/12/22 岩波
https://www.iwanami.co.jp/files/tachiyomi/pdfs/0063160.pdf
試し読み 序 小平数学の概要 第 1 章 ワイルとの出会い
P9
1.2 ヘルマン・ワイルの生涯
1911-12 年の冬学期にゲッチンゲン大学で行った
リーマン面に関する講義の一部は 1913 年に『リーマン面の概念』([Wey3])と
して出版された.これは小平に大きな影響を与え,複素多様体論の出発点とな
った本であるので,次節で詳しく解説する.
P11
1.3 『リーマン面の概念』
1913 年に出版された『リーマン面の概念』([Wey3])は,小平に大きな影響
を与え,その後の複素多様体論の進展に計り知れない貢献をした.
『リーマン面の概念』の序文の冒頭でワイルは次のように述べている.

ワイル自身はリーマン面を厳密に定義したことはそれほど重要なこととは思
っていなかった節がある.小平自身はこのことに関しては次のように記してい
る.

ワイル先生が研究所で数週間にわた
亘って数学の五〇年史,すなわち一九〇〇
年から一九五〇年までの歴史の講義をされたことがあった.ヒルツェブル
ッフ(Friedrich Hirzebruch)が聴講していたから一九五二年の春学期であ
ったと思う.

つづく

32132人目の素数さん2022/05/30(月) 07:34:30.40ID:MglcMLvz
>>31
つづき

ネバンリンナ(Nevanlinna)理論を高く評価されたこと,抽象的な一般論はつ
まらないと言われたこと,等である.何について抽象的一般論はつまらな
いといわれたかは覚えていないが,続いて「それならば何故『リーマン面
の概念』という一般論を書いたかと聞かれるかも知れないが,当時リーマ
ン面について話すとき「一般のリーマン面を考えよう」といってこんなこ
と(両手を水平にヒラヒラと動かす)をしていた.いくらなんでもこれでは
困ると思って『リーマン面の概念』を書いた」と言われた.何だか『リー
マン面の概念』はつまらない抽象論であるといわれたように聞えた.こ
れには驚いた.よく知られているように『リーマン面の概念』は現代の複
素多様体論の原型となった本で,そこには一次元複素多様体の殆ど完璧
な理論が展開されているのである.([Kod1,「ヘルマン・ワイル先生」],
pp.184 185)
ワイルの名著『リーマン面の概念』は 20 世紀初頭,明確に定義されること
のなかったリーマン面を 1 次元複素多様体と定義して理論を展開したもので
略(というか、ここで終わり)

https://en.wikipedia.org/wiki/Schottky%27s_theorem
Schottky's theorem introduced by Schottky (1904)
https://ja.wikipedia.org/wiki/%E3%83%94%E3%82%AB%E3%83%BC%E3%83%AB%E3%81%AE%E5%AE%9A%E7%90%86
ピカールの定理(英: Picard theorem)は、複素解析における定理。大定理と小定理があり、エミール・ピカールによって1878年に小定理が、1886年に大定理が証明された。
https://en.wikipedia.org/wiki/Riemann_surface
Riemann surface
5 Classification of Riemann surfaces
5.1 Elliptic Riemann surfaces
5.2 Parabolic Riemann surfaces
5.3 Hyperbolic Riemann surfaces
6 Maps between Riemann surfaces
6.1 Punctured spheres
6.2 Ramified covering spaces
(引用終り)
以上

33132人目の素数さん2022/05/30(月) 11:44:11.56ID:3ZmuK8vP
>>30
以下 理解してから書き込んでな

補題
f: X→Yが連続写像、Z→Yが局所同相、X̅→Xを普遍被覆とすると合成写像X̅→X→YはZ→Yを通過する、すなわちX̅→Zで下の図式を可換とする連続写像がとれる

X̅→Z
↓ ↓
X→Y

定理
f: X→Yが連続写像、p:Z→Yが連続写像、X̅→Xを普遍被覆とする
Z₀ = { z | zの近傍でZ→Yは局所同相でない }
Y₀ = p(Z₀)
とする
fの像がY₀と共有点を持たないなら
合成写像X̅→X→YはZ→Yを通過する

34132人目の素数さん2022/05/30(月) 11:54:34.26ID:3ZmuK8vP
>>33
以下も読んでな

pは全射
YとしてはC\{0}をとる
やるべき作業は今の場合
X=Δ、Y=Z=ℂでp = exp(2πi cosh(z) )
で一次元複素多様体の場合
局所同相でない=微分=0だから
p' = exp(2πi cosh(z))' = 2πi exp( 2πi cosh(z) ) sinh(z)
が0になるところがZ₀
すなわちZ₀ = πiℤ
そこでπin∈Z₀を任意にとると
p(πin) = exp(2πi cosh(πin) )
. = exp( 2πi(±1))
. = 1
でも仮定はf(z)は0,1を取らない
だからimfはp(Z₀)と共有点を持たず
X̅→X→Yはpを通過する
しかしここでΔは元々単連結なのでX̅→Xは同相、よってfそのものがpを通過する

35132人目の素数さん2022/05/30(月) 11:59:33.51ID:3ZmuK8vP
>>30
P.S.
>(彼は)数理論理君という人なんだけど
超幾何君と読んでやりぃな
基礎論屋とちゃうんやし

36132人目の素数さん2022/05/30(月) 17:27:19.49ID:HTdcPe8m
>>21
あグロ

37132人目の素数さん2022/05/30(月) 17:27:27.77ID:HTdcPe8m
【NGWord推奨(正規表現)】
kakyoukyoutiba|day1-post-meridiem|cml-office|IerWI2I7OREJ|1212628738|1503813609

38132人目の素数さん2022/05/30(月) 20:52:45.43ID:MglcMLvz
>>35
どうも、スレ主です

>超幾何君と読んでやりぃな

了解
だけど、以前 昔基礎論やっていたと名乗っていたよ
なので、超幾何君(旧 数理論理君)とします

超幾何の論文出したら、ドクター超幾何に格上げします
精神面では、応援してあげたいね

5chなんかちょっと中止して、半年くらい集中して論文を1本纏めてくほしいな
誰か、日本数学会の大学アカデミックな超幾何研究者を見つけて、コネつけて、論文を見て貰うのが良いかも

レベル高そうだから、頑張れば、論文出せそうな気がする
ともかく、一度がんばって1本査読論文1本通してください
そうすれば、数学に対する見方が変わると思う

39132人目の素数さん2022/05/30(月) 21:12:23.71ID:MglcMLvz
ここらの話が、”Teichmuller space”に繋がっているんだね

https://en.wikipedia.org/wiki/Riemann_surface
Riemann surface

Classification of Riemann surfaces
Parabolic Riemann surfaces
If X is a Riemann surface whose universal cover is isomorphic to the complex plane C then it is isomorphic one of the following surfaces:

・ C itself;
・The quotient C/Z;
・A quotient C/(Z +Zτ) where τ ∈ C with Im (τ)>0.
Topologically there are only three types: the plane, the cylinder and the torus. But while in the two former case the (parabolic) Riemann surface structure is unique, varying the parameter τ in the third case gives non-isomorphic Riemann surfaces. The description by the parameter τ gives the Teichmuller space of "marked" Riemann surfaces (in addition to the Riemann surface structure one adds the topological data of a "marking", which can be seen as a fixed homeomorphism to the torus). To obtain the analytic moduli space (forgetting the marking) one takes the quotient of Teichmuller space by the mapping class group. In this case it is the modular curve.

つづく

40132人目の素数さん2022/05/30(月) 21:12:43.97ID:MglcMLvz
>>39
つづき

Hyperbolic Riemann surfaces
In the remaining cases X is a hyperbolic Riemann surface, that is isomorphic to a quotient of the upper half-plane by a Fuchsian group (this is sometimes called a Fuchsian model for the surface). The topological type of X can be any orientable surface save the torus and sphere.

A case of particular interest is when X is compact. Then its topological type is described by its genus g>= 2. Its Teichmuller space and moduli space are 6g-6-dimensional. A similar classification of Riemann surfaces of finite type (that is homeomorphic to a closed surface minus a finite number of points) can be given. However in general the moduli space of Riemann surfaces of infinite topological type is too large to admit such a description.

Punctured spheres
These statements are clarified by considering the type of a Riemann sphere C^ with a number of punctures. With no punctures, it is the Riemann sphere, which is elliptic. With one puncture, which can be placed at infinity, it is the complex plane, which is parabolic. With two punctures, it is the punctured plane or alternatively annulus or cylinder, which is parabolic. With three or more punctures, it is hyperbolic - compare pair of pants. One can map from one puncture to two, via the exponential map (which is entire and has an essential singularity at infinity, so not defined at infinity, and misses zero and infinity), but all maps from zero punctures to one or more, or one or two punctures to three or more are constant.
(引用終り)
以上

41132人目の素数さん2022/05/30(月) 21:31:59.35ID:ve96nUDX
順序数の引き算するアホに数学語る資格ないわ

42132人目の素数さん2022/05/31(火) 01:20:22.25ID:tzKRVEL7
ソリトン理論=可積分系とか書いていたくせに、羞恥心もなく「格上げします」と。
論文をコネとか、本当にわかっていないね。
査読論文でも、ハゲタカ雑誌だとマイナス評価になる。
こういうのが政治家になると、ほんとうに害になる。
慎太郎のせいで都立大が劣化したけど、影響力が減ってきたら学部名を元にもどして正常化しようとしている。

43132人目の素数さん2022/05/31(火) 03:00:11.71ID:RTL3hvmL
>>38
>以前 昔基礎論やっていたと名乗っていたよ
それ別人

44132人目の素数さん2022/05/31(火) 03:10:32.51ID:RTL3hvmL
ところで単位円板ΔってC-{0,1}の普遍被覆だよな?

45132人目の素数さん2022/05/31(火) 12:38:14.27ID:MlKwzN+F
>>44
複素平面CはC-{0}の普遍被覆
で被覆写像はexp

46132人目の素数さん2022/05/31(火) 12:40:19.01ID:MlKwzN+F
>>45
さて単位円板ΔからC-{0,1}への被覆写像は何でしょう?

47132人目の素数さん2022/05/31(火) 15:38:23.69ID:WPtRs/LU
>>46
具体的にかけるん?

48132人目の素数さん2022/05/31(火) 16:09:55.17ID:vMcsOxZ+
λ関数とかね
金八(?)先生お得意

49132人目の素数さん2022/05/31(火) 16:13:29.69ID:74gZ5LCo
>>48
どんな関数ですか?
ググッてもλ計算しか出てこない

50132人目の素数さん2022/05/31(火) 16:57:25.55ID:Z5nIGKup
>>49
モジュラーλ

51132人目の素数さん2022/05/31(火) 18:10:36.17ID:ETK56POA
>>50
thx

52132人目の素数さん2022/05/31(火) 18:25:09.94ID:ETK56POA
上半平面で微分が消えないのはどうやって示すんですか?

53132人目の素数さん2022/05/31(火) 18:37:31.38ID:ETK56POA
あぁ、対数微分か
なるほろ

54132人目の素数さん2022/05/31(火) 20:58:30.75ID:Rwy4VmWC
\Σ コン! コン!/
||
||Ю

55132人目の素数さん2022/05/31(火) 20:59:50.72ID:Rwy4VmWC
λッテモ ョロスィィ…デスカ?
||   /
||Ю

56132人目の素数さん2022/05/31(火) 21:01:12.26ID:Rwy4VmWC
彡||
彡|| ガチャッ! /  
彡||Ю

57132人目の素数さん2022/05/31(火) 21:03:15.85ID:Rwy4VmWC
… ||
∞ ||   
´д`)||Ю

58132人目の素数さん2022/05/31(火) 21:05:45.40ID:Rwy4VmWC
  ||
∞ || ダレカ ィマセンカ~?  
´д`)||Ю

59132人目の素数さん2022/05/31(火) 21:07:21.23ID:Rwy4VmWC
   ||
Σ∞ || マタªªズレマクッテルッピ! 
;´д`)||Ю

60132人目の素数さん2022/05/31(火) 21:08:34.81ID:Rwy4VmWC
   ||
∞ || …
´д`)||Ю

61132人目の素数さん2022/05/31(火) 21:09:08.39ID:Rwy4VmWC
   ||
 ∞ || ダレモィナィッピ…
´д`)||Ю

62132人目の素数さん2022/05/31(火) 21:10:14.97ID:Rwy4VmWC
   ||
 ∞ || …ズレガ治ッテルッピ…
´д`)||Ю

63132人目の素数さん2022/05/31(火) 21:11:05.77ID:Rwy4VmWC
   ||
 ∞ || …コンナボッチスルルェヂャ
´д`)||Ю

64132人目の素数さん2022/05/31(火) 21:13:14.51ID:Rwy4VmWC
   ||
 ∞ || 太~ィ鬱ガλッチャ´~`ゥゥ…
*´д`)||Ю

65132人目の素数さん2022/05/31(火) 21:27:36.54ID:Rwy4VmWC
      ✨🌟✨ 
 
 





    ミゥッチェマ大先生ゎ、
    高貴高齢者ダケド
 
  ♊双子山ッチャマナンダョナ~…
 
    ァ🚕のミズ🐢座トゎ
   i性💞ピッタンコカンカン💕
   ナンダョナ~… ォレ喪ナ~…
    …n回生マレ変ゎッテ


 
 
 

 
∞  λ籍📝シテッ
*´д`)彡

66132人目の素数さん2022/05/31(火) 21:34:55.39ID:Rwy4VmWC
…ヌッ!₄ッチャマ、、、
勝手ニ乱λシマクリ アゲマクッチャッテ…

マッコト センセンシァル!
✨λ✨←ッテ見チャッタラ…
…ッィ…ミッチャマ様と…
 
 
 
   ✨💝✨λ籍✨💍✨
 
  
   シタクナッチャッ…タ…アァァ…

67132人目の素数さん2022/05/31(火) 21:40:21.91ID:Rwy4VmWC
全てのλゎ✨🌟✨ミゥッチャマ様✨🌟✨ニ通ずルッコム。
 
 
 
…ゅる₄亭、ゅる₄t!

センセンシァル!
|=₃

68132人目の素数さん2022/06/01(水) 07:07:53.42ID:/Pyy/jbW
テスト


lud20220601155201
このスレへの固定リンク: http://5chb.net/r/math/1653712154/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

TOPへ TOPへ  

このエントリをはてなブックマークに追加現在登録者数177 ブックマークへ


全掲示板一覧 この掲示板へ 人気スレ | Youtube 動画 >50 >100 >200 >300 >500 >1000枚 新着画像

 ↓「Inter-universal geometry と ABC予想 (応援スレ) 67 YouTube動画>2本 ->画像>5枚 」を見た人も見ています:
Inter-universal geometry と ABC予想 (応援スレ) 70
Inter-universal geometry と ABC予想 (応援スレ) 61
Inter-universal geometry と ABC予想 (応援スレ) 57
Inter-universal geometry と ABC予想 (応援スレ) 66
Inter-universal geometry と ABC予想 (応援スレ) 48
Inter-universal geometry と ABC予想 (応援スレ) 63
Inter universal geometry と ABC予想(応援スレ)58
Inter-universal geometry と ABC予想 (応援スレ) 44
Inter-universal geometry と ABC予想 (応援スレ) 45
Inter-universal geometry と ABC予想 (応援スレ) 54
Inter-universal geometry と ABC予想 (応援スレ) 68
Inter-universal geometry と ABC予想 (応援スレ) 73 (78)
Inter-universal geometry と ABC予想 (応援スレ) 72 (290)
Interーuniversal geometryとABC予想(応用スレ)51
Inter-universal geometry とABC 予想53
Inter-universal geometry とABC 予想50
Inter-universal geometry とABC 予想48
Inter-universal geometry とABC 予想46
Inter-universal geometry とABC 予想52
Inter-universal geometry とABC 予想54
Inter-universal geometry とABC 予想49
Inter-universal geometry とABC 予想45
Inter-universal geometry とABC 予想56
Inter-universal geometry とABC 予想55
Inter-universal geometry とABC 予想58 

Inter-universal geometry とABC 予想57 

Inter-universal geometry と ABC予想 53
Inter-universal geometry と ABC予想 51
Inter-universal geometry と ABC 予想 46
Inter-universal geometry と ABC予想 23
Inter-universal geometry と ABC予想 34
Inter-universal geometry と ABC予想 22
Inter-universal geometry と ABC 予想 44
Inter-universal geometry と ABC 予想 45
Inter-universal geometry と ABC予想 29
Inter-universal geometry と ABC予想 25
Inter-universal geometry と ABC予想 49
Inter-universal geometry と ABC予想 43
Inter-universal geometry と ABC予想 31
Inter-universal geometry と ABC予想 33
Inter-universal geometry と ABC予想 27
Inter-universal geometry と ABC 予想 43
Inter-universal geometry と ABC予想 17
Inter-universal geometry と ABC予想 否定派2
Inter-universal geometry と ABC予想 19
Inter-universal geometry と ABC予想 40
Inter-universal geometry と ABC予想 32
Inter-universal geometry と ABC予想 否定派
Inter-universal geometry と ABC 予想 43
Inter-universal geometry と ABC 予想 47
Inter-universal geometry と ABC予想 10
palet 応援スレ2
Griffiths-Harris, Principles of Algebraic Geometry.
一人で行くHello! Project 20th Anniversary!! Hello! Project 2018 WINTER - 23
Jewel☆Neige応援スレ21
【Twitter】suimon&こいなぎ応援スレッド2【将棋ウォーズ】
Allen Hatcher著『Notes on Introductory Point-Set Topology』を読む。
Legendre予想の証明
藤井聡太七段応援スレ
数学界の父子鷹を応援するスレ
Donald E. Knuth The Art of Computer Programming を読む。
abc予想解けたんだが
ABC予想を証明した望月新一教授を語ろう
ABC予想が解かれたかもしれんぞ! Part3
望月の定理(旧称ABC予想)から出てくる定理あげてけ

人気検索: Secret star 熟年 高校生 2015 アウあうロリ画像 Pthc 女子小学生パン 小学生膨らみ 女子中学生 Loli 洋和ロリ あうあう女子小学生エロ画像
00:33:09 up 104 days, 1:31, 0 users, load average: 39.76, 66.97, 55.06

in 0.021503925323486 sec @0.021503925323486@0b7 on 073013