◎正当な理由による書き込みの削除について:      生島英之とみられる方へ:

高校数学の質問スレ Part419 ->画像>2枚


動画、画像抽出 || この掲示板へ 類似スレ 掲示板一覧 人気スレ 動画人気順

このスレへの固定リンク: http://5chb.net/r/math/1653054402/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

1132人目の素数さん2022/05/20(金) 22:46:42.02ID:OqV7vzMH
【質問者必読!!】
まず>>1-4をよく読んでね

数学@5ch掲示板用 掲示板での数学記号の書き方例と一般的な記号の使用例
http://mathmathmath.dotera.net/

・まずは教科書、参考書、web検索などで調べるようにしましょう。(特に基本的な公式など)
・問題の写し間違いには気をつけましょう。
・長い分母分子を含む分数はきちんと括弧でくくりましょう。
  (× x+1/x+2 ;  ○((x+1)/(x+2)) )
・丸文字、顔文字、その他は環境やブラウザによりうまく表示できない場合があります。
 どうしても画像を貼る場合はPCから直接見られるところに見やすい画像を貼ってください。
 ピクトはPCから見られないことがあるので避けてください。
・質問者は名前を騙られたくない場合、トリップを付けましょう。
 (トリップの付け方は 名前(N)に 俺!#oretrip ←適当なトリ)
・質問者は回答者がわかるように問題を書くようにしましょう。
 でないと放置されることがあります。
 (変に省略するより全文書いた方がいい、また説明なく習慣的でない記号を使わないように)
・質問者は何が分からないのか、どこまで考えたのかを明記しましょう。
 それがない場合、放置されることがあります。
 (特に、自分でやってみたのに合わないので教えてほしい、みたいなときは必ず書くように)
・回答者も節度ある回答を心がけてください。
・970くらいになったら次スレを立ててください。

※前スレ
高校数学の質問スレ Part416
http://2chb.net/r/math/1644770756/
高校数学の質問スレ Part417
http://2chb.net/r/math/1648557700/
高校数学の質問スレ Part418
http://2chb.net/r/math/1650534943/

2132人目の素数さん2022/05/20(金) 23:00:10.20ID:OqV7vzMH
剰余定理で質問なんですけど、割り算で、余りの次数は商の次数よりも低くなりますか?

3132人目の素数さん2022/05/20(金) 23:02:04.80ID:oi654H9m
ここには面倒なルールは一切ありません。
自由に投稿しましょう。

4132人目の素数さん2022/05/21(土) 04:21:09.49ID:cSSYrRod
>>2

剰余の定理は、高次式を1次式で割った
商×1次式+余(定数)
を示すこと

次数は当然商より低いし、次数0とかなしとかとらえられる

5132人目の素数さん2022/05/21(土) 05:20:49.24ID:4TsQhaBr
高校数学の質問スレ Part419 ->画像>2枚

θの計算方法がうろ覚えです

この式の場合、実際にθを代入して計算するとどういう途中式になるのでしょうか
たとえばr= 1 ,θ= 90° の場合

θは角度なのに()の中をどう代入するのか
sin90°が1なのは理解できるのですが
S = 1/2 × (90°- 1 )
となってしまうのですか?

6132人目の素数さん2022/05/21(土) 06:14:50.21ID:GwdsIp6q
>>4
xp(x)を(x-3)(x-2)^2で割った時の商をQ(x)、余りをR(x)とすると、
xp(x)=(x-3)(x-2)^2Q(x)+R(x)という式を作るのを目標にするという説明の後に、R(x)の次数<Q(x)の次数と書いてあったんですけど、余りの次数は商の次数よりも小さいとは限らませんよね?

7132人目の素数さん2022/05/21(土) 06:24:05.09ID:GwdsIp6q
>>4
(1)xの整式p(x)をx-3で割った余りは2、(x-2)^2で 割った余りはx+1である。p(x)を(x-2)^2で割っ た商をq(x)とするとき、q(x)をx-3で割った余り を求めよ。
(2)p(x)は(1)と同じ条件を満たすものとする。この とき、xp(x)を(x-3)(x-2)^2で割った余りを求め よ。

問題文です

8132人目の素数さん2022/05/21(土) 08:01:50.41ID:cSSYrRod
>>6
紛らわしいな

正式のの計算なら、商の次数が余りの次数より小さいことはあり得るよ

それと剰余の定理は別の話

正式を一次式で割り込んだ時、余は定数になるよね
それで一次式が0になる変数の値の時、元の正式の値は余りの定数になることを、利用しろってこと

9132人目の素数さん2022/05/21(土) 08:29:23.38ID:z1x7gqQ5
>>5
そのHPの角度θの単位は度ではなくラジアン
つまり弧長/半径です
90度=π/2ラジアン

10132人目の素数さん2022/05/21(土) 08:32:55.61ID:cSSYrRod
>>7
答えを知りたいのか、ヒントを知りたいのか?

(1)の結果により
q(x)=r(x)(x-3)-2
と置けることがヒント

11132人目の素数さん2022/05/21(土) 13:24:23.53ID:PvQneS+V
複素数平面上の相異なる2点A(α)、B(β)を通る直線ABに原点から下ろした垂線の足をH(γ)とする。
γ=αβとなるために、α、βが満たすべき必要十分条件を求めよ。

12132人目の素数さん2022/05/21(土) 13:28:54.62ID:PvQneS+V
xについての方程式
x^2+(cost)x+sint=0…(*)
について、以下の問に答えよ。

(1)tが0≦t<2πを動くとき、方程式(*)が実数解を持つようなcostの範囲を求めよ。

(2)tが0≦t<2πを動くとき、方程式(*)の解が存在する複素数平面上の領域を図示せよ。

13132人目の素数さん2022/05/21(土) 13:33:07.82ID:jtYP0lkU
(2)って何の絵を描けばいいの?

14132人目の素数さん2022/05/21(土) 13:33:09.33ID:PvQneS+V
円に内接する六角形ABCDEFにおいて、3本の対角線AD,BE,CFは1点で交わり、かつ四角形BCEFは正方形であるという。
このとき、この六角形は正六角形と言えるか。

15132人目の素数さん2022/05/21(土) 13:34:00.28ID:PvQneS+V
>>13
失礼しました、方程式(*)の解が存在する複素数平面上の領域です。

16132人目の素数さん2022/05/21(土) 13:47:59.61ID:NL+dCxCj
>>3
できました

単調関数の可積分性。fを単調増加とする。Iの任意の分割に対してm=f(x(k-1))、M=f(xk)
0≦S(⊿)-s(⊿)=
Σ[k=1, m](f(xk)-f(x-1))(xk-x(k-1))
≦Σ[k=1, m](f(xk)-f(x-1))d(⊿)
=d(⊿)(f(b)-f(a))→0となるから
リーマンの可積分条件が満たされる。

17132人目の素数さん2022/05/21(土) 13:58:34.93ID:elf1lior
正解です。

18132人目の素数さん2022/05/21(土) 14:20:20.94ID:NL+dCxCj
>>14
できました

連続関数の可積分性。コンバクト集合I上で連続な関数fはI上で一様連続であることは証明済み。
従って任意の正数εに対して正数δが存在して|x-y|<δを満たす全てのx, y∈Iに対して|f(x)-f(y)|<εが成り立つ。
d(⊿)<δとなる任意の分割⊿をとると任意の区間|Ik|<δとなるので、x, y∈Ikの時, |f(x)-f(y)|<εとなる。
0≦Mk-mk=sup|f(x)-f(y)| (x, y∈Ik)<εとなる。
0≦S(⊿)-s(⊿)=Σ[k=1, m](Mk-mk)|Ik|<ε(b-a)→0。
ゆえにS(⊿)=s(⊿) (d(⊿)→0)
リーマンの可積分条件によりfはI上可積分である。

19132人目の素数さん2022/05/21(土) 15:04:50.74ID:GwdsIp6q
>>10
解説にR(x)の次数<Q(x)の次数となることに注意すると書いてあったので、xp(x)の次数が分からないのに、なんでそうなるのかを知りたかったです。

20132人目の素数さん2022/05/21(土) 15:38:18.20ID:IbYvDcG8
たぶん
・読み間違い
・解説を書いた奴が底抜けのバカ
のどっちか

21132人目の素数さん2022/05/21(土) 15:46:07.66ID:bk+VeqUG
>>19
で理解したのかな
>>4 と >>8
でりかい

22132人目の素数さん2022/05/21(土) 15:46:21.76ID:bk+VeqUG
できるはず

23132人目の素数さん2022/05/21(土) 15:48:17.32ID:bk+VeqUG
ちなみに
xP(x)だと、P(x)より次数は一つ上がるね

24132人目の素数さん2022/05/21(土) 15:57:23.77ID:8BMkx4bc
質問です
f(x)=x^-1 (0<x)を積分するとF(x)=log(x)が得られるのは納得したのですがグラフから0<x<1の範囲でF(x)は負の値をとっています
F(x)はf(x)とx軸の面積の値ではないのですか?

25132人目の素数さん2022/05/21(土) 16:12:38.64ID:GwdsIp6q

26132人目の素数さん2022/05/21(土) 16:17:16.40ID:GwdsIp6q
>>25
解説の画像を載せたので、分かる方いらっしゃいましたら教えてほしいです

27132人目の素数さん2022/05/21(土) 16:36:09.38ID:PvQneS+V
>>12
傑作です
よろしくお願いいたします

28132人目の素数さん2022/05/21(土) 17:07:42.14ID:Sb4k2IeN
>>24
違います
符号付き面積です
x軸より下の部分はマイナス付きの面積が出ます

29132人目の素数さん2022/05/21(土) 17:24:43.11ID:NL+dCxCj
できました

リーマン・ルベーグの定理
I=[a, b]、fはI上可積分の時,
lim[t→∞]∫[a, b]f(x)sintadx、
sintxをcostxに変えても同様。
a=bの時, 自明。
a<bの時, 任意の正数εに対して正数δが存在して、d(⊿)<δとなるIの任意の分割⊿に対して
(1) 0≦S(⊿)-s(⊿)<ε/2となる。
fはI上可積分であるからfは有界である。すなわち正数Mが存在して
0≦|f|<Mとなる。a∈I。
今、(1)を満たす分割⊿を1つ固定する。t>0に対して
|costx|≦1、|sintx|≦1
|∫fsin|≦|Σ∫(f-fk)sin|+|Σ∫fksin|
≦Σ(Mk-mk)(xk-x(k-1))+
(M/t)|costxk-cost(k-1)|
≦(S(⊿)-s(⊿))+2mM/t
t0=4mM/εとおくとt≧t0で
|∫fsin|<ε/2+ε/2=ε

Σn/(n^2+k^2)=
Σ[k=1, n](1/n)(1/(1+(k/n)^2))
f(x)=1/(1+x^2)の区間I=[0, 1]をn等分して得られる分割⊿nに関するリーマン和の1つである。代表点ξk=k/nとした。
fはI上単調減少または連続であるから可積分である。積分を実行して、π/4。

30132人目の素数さん2022/05/21(土) 20:03:01.28ID:AgFpa+Ir
正解です。

31132人目の素数さん2022/05/22(日) 00:11:30.07ID:0fmBr18t
できました

指数関数の直交性。
複素数に対して内積を入れる。

F'=f、(F○φ)'(t)=F'(φ(t))φ'(t)
=f(φ(t))φ'(t)
φ(t)はJ上連続であるからf(φ(t))はI上連続で可積分であり、φ'(t)はI上可積分であるから
∫f(x)dx=∫f(φ(t))φ'(t)dt
(積分区間は対応して変わる)
変数変換公式、置換積分法の公式

左辺の微分=fg'、
右辺の微分=g'f+gf'-gf'=g'f
部分積分法の公式

f(x)=(1/(x^2+2px+q))
D=0の時, -1/(x+p)
D>0の時, (1/2√(p^2-q))log|(x+p-√)/(x+p+√)|
D<0の時, {1/√(q-p^2)}Arctan((x+p)/√(q-p^2))

32132人目の素数さん2022/05/22(日) 01:12:44.43ID:0fmBr18t
>>27
できました

x^2/(x+1)^2(x-2)
x^2=A(x-2)+B(x+1)(x-2)+C(x+1)^2
A=-1/3, C=4/9, B=5/9
1/3(x+1)+(5/9)log|x+1|+(4/9)log|x-2|

1/(x^3+1)
1=A(x^2-x+1)+(Bx+C)(x+1)
A=1/3、B=-1/3、C=2/3
(1/3)log|x+1|-(1/6)log|x^2-x+1|
(1/√3)Arctan((2x-1)√3)

33132人目の素数さん2022/05/22(日) 01:14:27.53ID:+qXDKhxt
>>26
ちょっと解説忘れよう

>>10 は理解できるか?

34132人目の素数さん2022/05/22(日) 01:20:34.87ID:+qXDKhxt
>>26
で、理解できたら
p(x)をr(x)含んだ式で書いてくれる

35イナ ◆/7jUdUKiSM 2022/05/22(日) 01:34:25.05ID:IUQ/9Pio
>>12(1)
D=cos^2t-4sint≧0
-2√sint≦cost≦2√sint
∴-2≦cost≦2
こうかな?

36132人目の素数さん2022/05/22(日) 02:07:52.36ID:4G8gOEyF
そいつは解説の「余りの次数<商の次数」の文言に疑義を呈しているのであって問題自体を教えてくれとは言ってないだろ
言い方は悪いが質問の意図すら理解できないヤツに「理解できるか?」と上から目線で講釈垂れられてるのはさすがに可哀想で見てられない

37132人目の素数さん2022/05/22(日) 04:47:12.91ID:5dQM5zgU
>>36
お前が教えてやれ

38132人目の素数さん2022/05/22(日) 05:15:15.55ID:5dQM5zgU
>>36
俺も質問者と同じ疑義持つよ

だけど解説に対して間違いだと言い切る根拠もない
だとしたら、解説考えるのやめて、別の解き方教えるのが良くない?

39132人目の素数さん2022/05/22(日) 05:21:41.12ID:2UPenvR9
>>38
割る数が3次式なので結局、式を変形して余りを2次式以下にしないといけないことは理解しています。しかし,どうしても余りの次数<商の次数という文言が気になりました。おそらく解決しないようなので、問題の解説自体は大丈夫です。

40132人目の素数さん2022/05/22(日) 05:23:27.88ID:5dQM5zgU
>>36
R(x)はたかだか2次式確定だけど
Q(x)が1次式であること、解く前に否定できる?

41132人目の素数さん2022/05/22(日) 05:24:04.82ID:2UPenvR9
>>39
理系数学入試の核心という定番の問題集なんで、流石に誤植というわけではいと思うんですけどね...

42132人目の素数さん2022/05/22(日) 05:25:39.41ID:5dQM5zgU
>>39
私も正直、疑義持ちます。
でも間違いと言い切る根拠がない。

だとしたら解説無視したらとしか言いようがない。

43132人目の素数さん2022/05/22(日) 05:33:09.13ID:2UPenvR9
https://imgur.com/a/A7QRpWZ
いちおう答えも載せておきます。

44132人目の素数さん2022/05/22(日) 05:38:08.43ID:2UPenvR9
xp(x)かQ(x)の次数のどちらかを確定することができる方法があれば、解決できると思います。

45132人目の素数さん2022/05/22(日) 05:41:37.98ID:5dQM5zgU
>>44
どうなんだろね
解決できないんじゃない?

初めからわかるって、問題の意義なさないし
余りがたかだか2次式しか、言えないでしょ

問題が解けてるなら、正直言うことなし

46132人目の素数さん2022/05/22(日) 06:57:27.43ID:5dQM5zgU
>>36
でさ
お前、解説に即した解答してみろよ

可哀想で見てられないんだろ

47132人目の素数さん2022/05/22(日) 07:07:30.57ID:5dQM5zgU
参考書や問題集って、結構誤植や誤りってあるんだよ
でも、正面切って否定できる根拠がなければ、別の解き方教えるのが建設的なんだって

今回の場合、誤植ってレベルでなく誤りっぽいんだけど、それ証明する手間暇考えたら、別の解き方したらにしたほうがいいんじゃないかって、それだけの話さね

48132人目の素数さん2022/05/22(日) 08:21:44.44ID:5dQM5zgU
>>18
リーマンって言葉普通の高校生知らんぞ
それ高校数学の話か?

49132人目の素数さん2022/05/22(日) 09:24:02.23ID:SaGpQLT8
>>24
まず主題とは関係ない間違いとして、1/x(0<x)の原始関数F(x)は
F(x)=log(x)+C(Cは積分定数)だね

んで端的に説明すると、不定積分と定積分を混同してる
不定積分で出てくるのは、原始関数であり、これ自体は面積では無い

面積S=∫[a→b]f(x)dx=F(b)-F(a)だから

つまり面積の符号は、ある点におけるF(x)の符号じゃなくて、原始関数の増減で判断できる

log(x)は狭義単調増加するからF(b)-F(a)は正となって、1/xのグラフを書いた時に期待できる面積の符号が正であることとも合致する

50132人目の素数さん2022/05/22(日) 09:38:14.45ID:5dQM5zgU
小学生での四角形上の点の速度なんかの問題は
あれ、数学じゃなく、微積や物理の問題だよね

まだ、物理、数学に分化してないレベルだからしょうがないけど

51132人目の素数さん2022/05/22(日) 10:29:29.11ID:6Sjag5sj
>>26
できました

その解説は誤りである。
以下の解答により、商の次数が不要であることを示す。

mod (x-2)^2(x-3)で考える。
2つの条件より
p(x)≡-2(x-2)^2+x+1とおける。
∴xp(x)≡-2x(x-2)^2+x^2+x
≡-6(x-2)^2+x^2+x
=-5x^2+25x--24 (答え)

この解答には商が出現しない。
この問題は「p(x)を適当な多項式によって分類する問題(剰余類)の問題」なので商は関係ない。従ってその解説は誤りである。

52132人目の素数さん2022/05/22(日) 11:00:54.46ID:6Sjag5sj
>>24
できました

以下最後まで、x>0、0<a≦bとする。
関数f(x)=1/xは単調減少関数または連続関数なのでx>0の適当なコンパクト集合上で可積分である。

y=1/xとx軸、縦線x=a、x=bで囲まれた部分の面積は∫[a, b]dx/xで表される。→定積分。
この場合、コンパクト集合I=[a, b]というのが前提で、∫[a, b]f=-∫[b, a]fが成り立つ。

ご質問のケースではx>0において
logx=∫[1, x]dt/tから出発して、x>1では正、x<1では負、x=1では0になると考えると良い(不定積分の下端をx=1に固定する)。logxの符号は関数f(x)=1/xをコンパクト集合[1, x]で積分するか[x, 1]で積分するかの違いに相当する。コンパクト集合というのはここでは積分区間(有界閉区間)のこと。

53132人目の素数さん2022/05/22(日) 11:04:14.78ID:OR576ecB
ついやってもうたてへぺろな間違いじゃなくて、ものすごく頭の悪そうな間違いだよね

54132人目の素数さん2022/05/22(日) 11:33:18.09ID:5dQM5zgU
>>36 が何に憤りを覚えてんのか知らんが
可哀想と思うなら自分で教えろって

参考書に従った解答示せよ

55132人目の素数さん2022/05/22(日) 18:36:19.44ID:6Sjag5sj
できました

tan(x/2)=tとおく
dx=2dt/(1+t^2)、cosx=(1-t^
2)/(1+t^2)で変数変換する。
2(1-a)/(1+a)dt/
(1-a)^2/(1+a)^2 +t^2
2Arctan{(1+a)/(1-a) tan(x/2)}

tanx=tとおく
dx=dt/(1+t^2)で変数変換する。
(dt/b^2)/(a^2/b^2+t^2)
(1/ab)Arctan(btanx/a)

t=√(x-α)/(x-β)とおく
x-β=(α-β)/(-t^2+1)
dx=(α-β)2tdt/(1-t^2)^2で変数変換する
dx/t(x-β)=2dt/(1-t^2)
log|(√x-α+√x-β)/(√x-α-√x-β)|

56132人目の素数さん2022/05/22(日) 20:56:12.23ID:rbw8Nn8J
if関数の意味を教えて下さい
floorとはなんですか?また、どうして数式内に以上、以下があるのでしょうか?

57132人目の素数さん2022/05/22(日) 22:19:30.30ID:MPZjBhYc
m,nともに任意の自然数であるとき、
10^mn+10^n=1≡mod 10^n-1は値を問わず成り立ちますか?

58132人目の素数さん2022/05/23(月) 00:13:58.75ID:dNv8OJVf
>>56
エクセルの話かな
①if関数の意味を教えて下さい
→ある条件を設定して合致した時としなかった時で処理を変えてくれる関数

②floorとはなんですか?
→入力された値を任意の基準値の倍数に最も近い値へと端数処理してくれる関数

③どうして数式内に以上、以下があるのでしょうか?
→たとえば会計が1万円「以上」の場合10%割引
9999円「以下」の場合5%割引という条件設定して①で処理する
さらに割引後の金額をうん十円を切って端数をうん百円で揃えて提示したい時②の基準値を100に設定し処理すればよい

59132人目の素数さん2022/05/23(月) 00:58:35.29ID:dFeHLbX/
>>57
10^mn+10^n=1≡mod 10^n-1は値を問わず成り立ちますか?

→ 10^mn+10^n≡1 (mod 10^n-1)が成り立つかという質問でいいのかな

m=n=1のとき
10^1+10^1=20
mod 10^1-1=9
∴20≡2 (mod 9)

じゃないかな

60132人目の素数さん2022/05/23(月) 03:11:16.19ID:nCHnJNXh
sin1°、cos1°の少なくとも一方は無理数であることを証明せよ。

61132人目の素数さん2022/05/23(月) 08:27:19.68ID:gX92QYxJ
ともに有理数だと仮定するとtan1°が有理数となり
その倍角も有理数となるのでtan64°とtan4°も有理数となり
加法定理よりtan(64°-4°)=√3が有理数となるので矛盾

62132人目の素数さん2022/05/23(月) 09:19:04.54ID:MCzd2jTR
結局倍角公式の他に加法定理も使うなら、最初から使えばいいのに

63132人目の素数さん2022/05/23(月) 09:55:51.59ID:gX92QYxJ
確かに

64132人目の素数さん2022/05/23(月) 15:00:05.85ID:aB+LoqPZ
>>58
ありがとうございました

65132人目の素数さん2022/05/23(月) 17:08:39.03ID:tLPgIHh6
できました

x+1=1/tとおくとdx=-dt/t^2、
-dt/√(t-1/2)^2+3/4
-log|t-1/2+√(t^2-t+1)|
-log|(-x+1+2√(x^2+x+1))/2(x+1)|

楕円積分((1-x^2)/(1+x^2))/√(1+x^4)
x+1/x=1/tとおくと
((1-x^2)/x^2)dx=dt/t^2
(dt/1-2t^2)=
(1/√2)Arcsin(√2x/(x^2+1)

部分積分法、漸化式
s^(n-1)c'=(n-1)s^(n-2)-ns^(n)
I(n)=(n-1)/nI(n-2)-s^(n-1)c/n
これでn=0, 1, -1, -2に帰着させる

定積分I(n)=((n-1)/n)・I(n-2)
I(2n)=(2n-1)!!/(2n)!!・π/2
I(2n+1)=(2n)!!/(2n+1)!!・1
t=π/2-xと変数変換するとI(n)=J(n)が示せる。

A=[0, 1)でfは連続であるから任意のu∈Aに対してfは[0, u]上可積分である。π/2、広義積分は収束する。

A=[0, ∞)でfは連続であるから任意のu∈Aに対してfは[0, u]上可積分である。広義積分はπ/2に収束する。

A=(0, 1]でfは連続であるから任意のu∈Aに対してfは[u, 1]上可積分である。広義積分は-1に収束する。

66132人目の素数さん2022/05/24(火) 13:52:54.56ID:oVdCHLxD
a[n+1]=a[n]/{a[n]+n!}
の一般項を求めることは可能ですか?

67132人目の素数さん2022/05/24(火) 14:04:23.98ID:hXzCA2Oj
初項がないので無理

68132人目の素数さん2022/05/24(火) 14:06:00.07ID:oVdCHLxD
半径1、中心Oの円Cがある。
Cの1つの半径上に点AをOA=a(0<a<1)となるようにとる。
C上を点Pが動くとき、△OAPの面積の最大値をaで表せ。

69132人目の素数さん2022/05/24(火) 14:06:35.45ID:oVdCHLxD
>>67
ご指摘ありがとうございます、a[1]=1です。

70132人目の素数さん2022/05/24(火) 14:37:36.10ID:k9EXpS8K
逆数は
1/a[n+1] = n!/a[n] + 1
1,2,5,31,745,89401,64368721...
なんも思いつかんな
無理ちゃう?

71132人目の素数さん2022/05/24(火) 21:23:36.76ID:CuQTUJu7
>>66
1/a[n]=b[n]と置くと b[1]=1 b[n+1]=b[n]n!+1
b[n+1]/b[n]=n!+1/b[n] このときもし1/b[n]を無視できれば
b[n+1]/b[n]=n! だからb[n]=b[1]Π[k=1,n-1]k!=Π[k=1,n-1]k!
となるがこのΠ[k=1,n-1]k!を簡単にn?とする
(n+1)?/n?=n! 2?=1 さらにb[1]=1となるよう1?=1とする
b[n]をc[n]n?と置くと b[n+1]-b[n]n!=1 における左辺は
c[n+1](n+1)-c[n]n?n!=(n+1)?(c[n+1]-c[n]) だから c[n+1]-c[n]=1/(n+1)?
ゆえにc[n]-c[1]=Σ[k=1,n-1]1/(k+1)? 
そして b[1]=c[1]1? より c[1]=1 だから c[n]=1+Σ[k=2,n]1/k? 
よってb[n]=c[n]n?=(1+Σ[k=2,n]1/k?)n? だから
a[n]=1/Π[k=1,n-1]k!/(1+Σ[k=2,n]1/Π[m=1,k-1]m!)  

72132人目の素数さん2022/05/24(火) 21:37:37.46ID:CuQTUJu7
>>68
底辺OAがa、高さOPはOAと直交するとき最大で1だから△OAPの最大はa/2

73132人目の素数さん2022/05/24(火) 21:53:45.52ID:CuQTUJu7
>>71
間違えた
✕c[n+1](n+1)-c[n]n?n!=(n+1)?(c[n+1]-c[n]) だから c[n+1]-c[n]=1/(n+1)?
○c[n+1](n+1)?-c[n]n?n!=(n+1)?(c[n+1]-c[n]) だから c[n+1]-c[n]=1/(n+1)?

74132人目の素数さん2022/05/24(火) 22:58:20.17ID:qbcpv+4w
少なくともexplicitには解けないんやろな
https://oeis.org/A051399/internal

75132人目の素数さん2022/05/25(水) 08:44:40.58ID:S6YQpB3H
実数から実数への、恒等関数でない関数f(x)で、3回合成関数f(f(f(x)))が恒等関数になるものはありますか?

76132人目の素数さん2022/05/25(水) 11:17:46.58ID:QMliOGhF
>>75
ないんじゃないの
三次関数の解の公式求める際に同じこと議論しないかい

77132人目の素数さん2022/05/25(水) 12:12:30.36ID:bIFS35BC
>>75
x=0 のとき 0 で、それ以外では 1-1/x とか

78132人目の素数さん2022/05/25(水) 12:48:28.51ID:QMliOGhF
>>77
ゴメン、それ恒等関数?

79132人目の素数さん2022/05/25(水) 13:07:17.64ID:bIFS35BC
f○f(x)で、x-1が分母に表れてしまうんですね。手直しします。、

x=0 のとき 0 で、x=1のとき 1で、それ以外では 1-1/x

80132人目の素数さん2022/05/25(水) 13:18:15.95ID:pOQ8KVVo
要するにRを3つA,B,Cに分けて全単射p : A→B、q : B→Cをとってきて r = (qp)⁻¹と定めて
f(x) = p(x) ( if x ∈ A )
q(x) ( if x ∈ B )
r(x) ( if x ∈ C )
にすればいい
A = ∪[3n,3n+1)
B = A+1,
C = B+1
でp,qはx+1をA,Bに制限してすればいい

81イナ ◆/7jUdUKiSM 2022/05/25(水) 17:56:03.52ID:4GcGXpmg
△OAPにおいて∠POAをθ(0°≦θ≦360°)とおくと、
△OAP=(1/2)OA・OPsinθ=asinθ/2
θ=90°,270°のとき
△OAP=a/2(最大値)
sin270°=-1だけど図は最大だからOK

82132人目の素数さん2022/05/26(木) 15:10:35.21ID:q9MoU3q6
a[1]=1
a[n+1]={a[n]}^3+1
で与えられる数列がある。
このときa[n]をa[k](k=1,...,n-1)で割った余りを求めよ。

83132人目の素数さん2022/05/26(木) 15:52:17.28ID:PV2MRVLr
1

84132人目の素数さん2022/05/26(木) 18:51:14.66ID:680pz756
今日明日の天気、週間天気、ピンポイント天気で共通する主な天気マークです。
1晴れ
2くもり
雨は降らない
3雨
4雪
5くもり
雨の可能性あり
6大雨
7大雪
8暴風雨
9暴風雪
この9つのうち全てのパターンを教えてください。

なお、主な予報の種類は以下のパターンになります。

『のち』: 前半と後半で天気が変化するときに用います。

『時々』: 天気が断続的に変わります。断続的な天気の合計時間は予報期間の1/2未満です。

『一時』: 一時的に天気が変わります。一時的な天気は予報期間の1/4未満です。

85132人目の素数さん2022/05/26(木) 18:56:28.11ID:OQtwIc5s
ルールが全く分からん
使える単語は
雨のち雨一時雨時々雨
とかもいいのか?
晴れ一時曇り時々雨
とかもいいの?
つまり“のち”、“時々”、“一時”は好きな回数使ってよくて“晴れ”、“雨”、“曇り”は自由に入れていいの?
こんな気象用語のルールなんか知らないよ

86132人目の素数さん2022/05/26(木) 19:01:05.91ID:OQtwIc5s
例えば基本晴れだけど断続的な雨が1/10くらいはあって一時的に1時間ほどずっと雨の状態が1/10両方ある場合に「晴れ時々雨一時雨」もありなん?

87132人目の素数さん2022/05/26(木) 19:44:31.89ID:680pz756
>>85
失礼。
言いたいことは雨のち晴れとか
晴れのち雨とかに使います。
ただ雨のち雨は無効でお願いします。
それなら雨のみなので。
また雨ときどき曇りとか
曇りときどき雨とかも含まれます。
また一時雨とかそういうものも含まれます。
他に質問はないでしょうか?
宜しくお願いします。

88132人目の素数さん2022/05/26(木) 19:46:02.33ID:680pz756
>>86
基本晴れなら晴れ一時雨です。
宜しくお願いします。

89132人目の素数さん2022/05/26(木) 20:38:43.24ID:eAFLqPiP
>>87
イヤ、分からんところ山ほどあるけど
例えば
・午前中は基本晴れ、一時的に雨、でも曇りになる時もちらほら
・午前中は基本雨、一時的に晴れ、でも曇りになる時もちらほら
なら

晴れ一時雨時々曇り、のち雨一時晴れ時々曇り

はありなん?
とりあえずホントの気象庁のルールはともかくとして、数学の組み合わせの問題として答え出したいならその辺のルールは自分でキチンと決めとかないと答えなんか出せるはず無いよ
基本ルールは
・A、A一時B、A時々C、A一時B時々Cの4パターン、そこにA,B,Cに晴れ、雨、曇りが入る(同じのは入らない)
・上でできる3+6+6+6=21パターンが午前と午後で切り替わって21×20通りもあり得る
だけ?他にない?

90132人目の素数さん2022/05/26(木) 21:09:43.40ID:15hU6TaT
nについての帰納法は

induction on n ですか
induction over n ですか

91132人目の素数さん2022/05/26(木) 21:19:50.04ID:680pz756
>>89
・午前中は基本晴れ、一時的に雨、でも曇りになる時もちらほら
こちらは晴れのち雨もしくは曇りで大丈夫そうです。
基本条件としては定義をするなら

前回にあるように

『のち』: 前半と後半で天気が変化するときに用います。
『時々』: 天気が断続的に変わります。断続的な天気の合計時間は予報期間の1/2未満です。
『一時』: 一時的に天気が変わります。一時的な天気は予報期間の1/4未満です。
これだと9かける8=72通りが3つで216通りで
あったますでしょうか?自信がないです。

92132人目の素数さん2022/05/27(金) 04:53:52.96ID:hl+4cGc4
1/4円 の重心の求め方を教えてください

93132人目の素数さん2022/05/27(金) 05:22:35.94ID:iVuENKxY
>>91
考えてみたけどもっとめんどくさい

9種類の果物で100mlのミックスジュースを作る
この時配合割合によって名前が変わる
ベース=b
時々=c
一時=d

1種類=9
2種類=9*8*3
3種類bcc=9*(8C2)
3種類bcd=9*8*7
3種類bdd=9*(8C2)

4種類、この時25パーずつをどう捉えるか

天気に戻すと
晴れ、雨、雪、くもりがそれぞれ6時間の場合
これをccccとしてカウントするのか
bcccとして「晴れ時々雨時々雪時々くもり」
「雨時々晴れ時々雪時々くもり」と朝一の天気で名前を変えるのか

とここまで考えたがめんどくさくなって諦めた
もっと簡単な考え方があるかも?

94132人目の素数さん2022/05/27(金) 07:31:52.31ID:HjXXWazB
時刻0に、xy平面上の原点(0,0)が赤く塗られている。
時刻n+1において、時刻nの時点で赤く塗られている格子点に隣接する格子点を赤く塗る。
たとえば時刻1においては、4点(1,0),(0,1),(-1,0),(0,-1)が赤く塗られる。
時刻nにおいて、何個の格子点が赤く塗られているか。nで表せ。

95イナ ◆/7jUdUKiSM 2022/05/27(金) 09:29:58.38ID:hv47Hl9X
>>81
>>94
n=3のとき4×4+3×3
∴nに対し(n+1)^2+n^2=2n^2+2n+1

96132人目の素数さん2022/05/27(金) 09:44:44.16ID:Pih5AOEH
>>93
んあー
3種類の時も4:4:2の時をbcdとしてカウントしちゃってるしやっぱりこれじゃダメだ

97132人目の素数さん2022/05/27(金) 09:49:38.71ID:l3ieoOtU
時刻tに第一象限にある赤い点の個数をa(t)とする
原点でないx軸上の赤い点の個数をb(t)、原点でないy軸上のそれをc(t)とする
a(1)=0、b(n)=n、c(n)=n は明らか
a(t+1)は時点tにおける第一象限と原点でないx軸上にある赤点全体を一つ上に
ずらしたものなのでa(t+1)=a(t)+b(t)=a(t)+t
ゆえにn>1のとき a(n)=a(1)+Σ[t=1,n-1]n=n(n-1)/2
題意の数は n>1のとき4a(n)+2b(n)+2(c)+1=2n(n-1)+2n+2n+1=2n(n+1)+1

98132人目の素数さん2022/05/27(金) 09:53:10.11ID:l3ieoOtU
間違えた
✕原点でないx軸上の赤い点の個数をb(t)
○x軸上の正の部分にある赤い点の個数をb(t)

99132人目の素数さん2022/05/27(金) 14:39:23.85ID:13SLrMxC
1種類=9
2種類=9*8*3
3種類bcc=9*(8C2)
3種類bcd=9*8*7
3種類bdd=9*(8C2)

これの合計ってわかりますか?

100132人目の素数さん2022/05/27(金) 15:23:36.90ID:L3HckGkK
>>99
> 1種類=9
> 2種類=9*8*3=216
> 3種類bcc=9*(8C2)=252
> 3種類bcd=9*8*7=504
> 3種類bdd=9*(8C2)=252

合計=1233だけども

上は晴れ4割くもり4割雨2割とかの時が場合分けされてる総パターンで以降も4種類~9種類までの場合分けも考えなきゃいけないしあんまり役立たないと思う
なんかのテキストの問題なら多分他の計算方法があるはず

101132人目の素数さん2022/05/27(金) 16:12:37.02ID:13SLrMxC
100さん。
ありがとうございます。
合計=1233ですね。

102132人目の素数さん2022/05/29(日) 12:34:10.68ID:1uOwMRWh
家に松坂和夫の解析入門という
全6巻の本があります。
父が昔読んだそうです。
30年ぐらい前の本です。

これは今売ってる松坂の数学入門全6巻と
内容は同じでしょうか?

どうして解析入門から数学入門へと
タイトル変えたのでしょうか?

103132人目の素数さん2022/05/29(日) 16:14:43.44ID:PU522fyq
a,b,c,dは自然数でA(a,b),B(a+c,b+d).C(c,d).O(0,0)とする。これらを頂点とする平行四辺形OABCの周を除いた内部をSとするとき、
ad-bc=2のとき、Sの中に格子点があれば、それは平行四辺形の対角線の交点であることを示せ

104132人目の素数さん2022/05/29(日) 16:54:50.90ID:mtjbmwed
この式の因数分解を教えて下さい

高校数学の質問スレ Part419 ->画像>2枚

105132人目の素数さん2022/05/29(日) 17:00:07.64ID:r53RALY0
>>104

x-y が因数になるよ

106132人目の素数さん2022/05/29(日) 17:01:41.96ID:r53RALY0
1項2項5項と3項4項を分けて考える

107132人目の素数さん2022/05/29(日) 17:04:58.52ID:EL738sdl
↑(a,b)と↑(c,d)の張る平行四辺形の面積の平方は両ベクトルのなす角をtとするとき
両ベクトルの長さの二乗の積*(sint)^2=両ベクトルの長さの二乗の積*内積の二乗
=(a^2+b^2)(c^2+d^2)-(ac+bd)^2=(ad-bc)^2
ゆえに格子点が作る平行四辺形の面積の最小は1で格子点が作る三角形の最小は1/2
そしてad-bcは題意の平行四辺形の面積となるので面積は2

仮にSに格子点pがあるとすると△POA、△POB、△POC、△PODがあるが
これら面積の和が題意の平行四辺形の面積である2を超えないためには
これら4つの三角形の面積は全て等しく1/2であることが必要
もしpが対角線の交点になければ面積の等しくない三角形があることになるので矛盾

108132人目の素数さん2022/05/29(日) 17:07:54.42ID:QVOPcRt4
>>107
自然数で三角形の最小値は1/2にはならんやろ

考え方はいいけど

109132人目の素数さん2022/05/29(日) 17:15:20.51ID:QVOPcRt4
あ、なるか、すまん、ゴメン

110132人目の素数さん2022/05/29(日) 17:34:57.73ID:XoniIjXD
>>107
ありがとうございます。

一つ質問なんですが、解答だとOAを底辺としてPの高さがCの高さの半分…①、OCを底辺と見ればPの高さはAの高さの半分…②
この2つの点を満たすPは明らかに平行四辺形なら対角線の交点である。

と解答に書いてあるんですがなんかこの①かつ②っていうのがいまいちしっくりこないです。①または②じゃないですか?①を考えたときに高さ半分のところに格子点があれば良いだけであって一つしか格子点がないとも限らなくないですか?
申し訳ないんですけど回答お願いします。

111132人目の素数さん2022/05/29(日) 17:39:57.24ID:XoniIjXD
文字化けすみません

一つ質問なんですが、解答だとOAを底辺としてPの高さがCの高さの半分…1、OCを底辺と見ればPの高さはAの高さの半分…2
この2つの点を満たすPは明らかに平行四辺形なら対角線の交点である。

と解答に書いてあるんですがなんかこの1かつ2っていうのがいまいちしっくりこないです。1または2じゃないですか?1を考えたときに高さ半分のところに格子点があれば良いだけであってその直線上に一つしか格子点がないとも限らなくないですか?

112132人目の素数さん2022/05/29(日) 17:52:18.62ID:EL738sdl
間違えた
✕△POA、△POB、△POC、△POD
○△POA、△PAB、△PBC、△PCO

>>110
>①または②じゃないですか?
①だけだと△POA=△BPCが言えるだけでなのでもし②を満たさない場合は
△PAB=△PCOが言えなくなるのでこのうちのどちらかは1/2を超える
つまり4つの三角形の面積の和は2を超えて矛盾なので②も満たす必要がある

113132人目の素数さん2022/05/29(日) 17:53:09.24ID:evfDi1zh
>>110
しっくりこなくていいよ
そんなもん解答になってない

114132人目の素数さん2022/05/29(日) 17:59:55.03ID:B+rRnRn4
「明らかに」がいい感じに胡散臭さにのスパイスになってるね

115132人目の素数さん2022/05/29(日) 18:07:33.62ID:XoniIjXD
あー格子点の三角形の面積の最小値が1/2なのに=じゃないって事はもう片方は1/2よりは大きくなるって事か
結果的にかつじゃないとダメって事ですね
わかりました。ありがとうございます。
他の回答してくれた方もありがとうございます。

116132人目の素数さん2022/05/29(日) 18:40:21.05ID:w7lNKTnm
>>105

その因数を使ってどのように因数分解するんでしょうか?

117132人目の素数さん2022/05/29(日) 18:41:28.87ID:ujVLAYR/
あ、ごめんなさい>>116ですがやっぱ出来そうです
ありがとうございました

118132人目の素数さん2022/05/29(日) 18:46:44.93ID:Z9Rnfc+H
>>104が(x-y)二乗-z(x-y)になったのですがこれで完成ですか?
あとどうすれば良いでしょうか

119132人目の素数さん2022/05/29(日) 18:48:26.15ID:EL738sdl
よく見ろ

120132人目の素数さん2022/05/29(日) 18:49:41.51ID:KiboFTWA
ここから括り方が分かりません

121132人目の素数さん2022/05/29(日) 19:18:55.52ID:sKENTqzl
放物線y=x^2で、点(0,0)は頂点と呼ばれますが、双曲線やだ円でも頂点と呼べる点はありますか。

たとえば双曲線xy-1=0では(±1, ±1)は頂点でしょうか。
だ円x^2+(y/2)^2=1で(±1,0)や(0,±2)は頂点でしょうか。

122132人目の素数さん2022/05/29(日) 20:06:27.87ID:cR6lth2C
>>119
(x-y)が共通因子なので括りましょう

=(x-y)(x-y-z)

123132人目の素数さん2022/05/29(日) 20:06:40.97ID:cR6lth2C
一個ずれた

124132人目の素数さん2022/05/29(日) 23:48:35.92ID:amc6gREE
仮説検定の基準となる確率って
いったいどこから湧いてくるんですか?
(´・ω・`)

125132人目の素数さん2022/05/30(月) 00:08:04.79ID:5taxJkGY
>>124
1%,5%のこと?

126イナ ◆/7jUdUKiSM 2022/05/30(月) 03:02:00.12ID:gPcL3aLW
>>95
>>104
与式=(x-y)^2-z(x-y)
=(x-y)(x-y-z)

127132人目の素数さん2022/05/30(月) 03:52:42.02ID:8N1SDg/2
>>122
>>126
ありがとうございます!

128132人目の素数さん2022/05/30(月) 19:00:02.65ID:Ltmhtv2W
実数xおよび自然数nが与えられたとき、
Σ(k=1,n-1)[x+k/n]=[nx]
が成り立つ事を証明せよ。

解答で
x=m+a/n(0≦a<n,[a]=u)と置いて解いてるのですがこう置いても問題ないのはなぜですか?

129132人目の素数さん2022/05/30(月) 19:38:35.70ID:/K5FNeRC
放物線C:y=x^2上に2点A(a,a^2),B(a+1,(a+1)^2)をとり、C上に∠APB=90°となるように点Pをとる。
このような点Pは各aの値に対して何個あるか。

130132人目の素数さん2022/05/30(月) 22:38:51.65ID:sujSMj+B
正の実数x,y,zが
(x+1/x)^2+(y+1/y)^2+(z+1/z)^2=4+(x+1/x)(y+1/y)(z+1/z)
を満たすとき, xyz=1を示せ

131132人目の素数さん2022/05/30(月) 23:05:16.56ID:HUjyKsnP

132132人目の素数さん2022/05/31(火) 05:43:43.94ID:A+YmhEqq
一辺の長さが1の正五角形の周および内部に含まれる正方形で、面積最大のものの面積を求めよ。

133132人目の素数さん2022/05/31(火) 10:43:59.46ID:IdmCutAz
この証明をお願いします
sin(x) cos(x) (tan(y) + tan(x + y)) - sin(y) cos(y) (tan(x) + tan(x + y)) = sin(x + y) cos(x + y) (tan(x) - tan(y))

134132人目の素数さん2022/05/31(火) 10:59:33.48ID:x266DxtR

135132人目の素数さん2022/05/31(火) 12:26:28.00ID:IdmCutAz
これ因数分解できるのか、、手計算の加法定理や和作積公式の変形は嵌ってぜんぜんできんが、
sin(x) cos(x) (tan(y) + tan(u)) - sin(y) cos(y) (tan(x) + tan(u)) - sin(u) cos(u) (tan(x) - tan(y))
=sec(u) sec(x) sec(y) sin(u + x) sin(u + y) sin(x - y) sin(u - x - y)

u= x+y のとき sin(u - x - y)=0

136132人目の素数さん2022/05/31(火) 12:43:05.20ID:IdmCutAz
重心と垂心と外心の重心座標から3点が一直線上(オイラー線)にあることの証明のために
行列式を手計算で出来なかったのでした.
Determinant({{1,1,1},{sin(2A),sin(2B),sin(2C)},{tan(A),tan(B),tan(C)}})=
-2 sec(A) sec(B) sec(C) sin(A - B) sin(A - C) sin(B - C) sin(A + B + C)

137132人目の素数さん2022/06/01(水) 00:09:35.07ID:LaJpzWDH
>>136
sin(B - C) (sin(A))^3 + sin(C - A)(sin(B))^3 + sin(A - B)(sin(C))^3 = sin(A - B) sin(A - C) sin(B - C) sin(A + B + C)

138132人目の素数さん2022/06/01(水) 00:21:58.66ID:GgVoT6z4
(n+1)^2+1がn^2+1の倍数となるような正整数nをすべて決定せよ。

139132人目の素数さん2022/06/01(水) 06:50:52.29ID:AbZqwpel
>>133>>135
>この証明をお願いします
>sin(x) cos(x) (tan(y) + tan(x + y)) - sin(y) cos(y) (tan(x) + tan(x + y)) = sin(x + y) cos(x + y) (tan(x) - tan(y))

まず、方針を立てた方が良い。チャート式として
<チャート式>
1)式をにらむ。式複雑。で等号証明問題だと分かる
2)複雑→簡単 の式変形は楽。例えば、二つの式のかけ算を展開するとかは単純計算だ。逆は難しい、例えば因数分解は展開より難しい。
3)等号証明問題の場合、a)左辺→右辺、b)右辺→左辺、c)左辺→簡単な左辺、右辺→簡単な右辺として、簡単な左辺=簡単な右辺を示す

<具体的当て嵌め>
1)再度式をにらむ、まず右辺 sin(x + y) cos(x + y) は加法定理で、二つの式のかけ算にして展開する
 左辺 tan(x + y)も、加法定理でバラス。但し、このとき tan(x + y)=sin(x + y)/cos(x + y)とする方が良いことに気づく(下記)
 tan(x)とかtan(y)も、sin(x)/cos(x)、 sin(y)/cos(y) にして、sinとcos の式だけにして単純化するべし
(単純化がキーワードです。tan(x)=sin(x)/cos(x)は気づかないと。テクニックとして常に意識するべし)
2)上記1)の方針で、左辺をばらして、sin cos の順で、べきも昇べき順に整理するべし。右辺も同様
 整理した左辺と右辺を比べる。「同じ式になった。よって等号成立。」と書く
3)”これ因数分解できるのか”>>135 は、受験テクニックとしては、方針違い。積の展開を優先すべき。受験外として、因数分解を考えるのは楽しいかも

>>134
WOLFRAM か。面白いね
”結果 0”とあるから、上記方針でばらしていけば、0じゃないかな

通りすがりですが
この方針でやれば、出来るはず(やってないけど)
やってみてください

140132人目の素数さん2022/06/01(水) 06:55:51.01ID:AbZqwpel
>>139
> 3)等号証明問題の場合、a)左辺→右辺、b)右辺→左辺、c)左辺→簡単な左辺、右辺→簡単な右辺として、簡単な左辺=簡単な右辺を示す

補足
等号証明問題の場合、方針が3つあるってことね
・左辺が複雑で、右辺が簡単なら、左辺→右辺
・逆なら、右辺→左辺 (同じ等式でも、こっちの方が 少しだけ難易度上かも)
・両方複雑ならば、複雑→簡単 の方針で、各辺をばらして比較する
ってことね

141132人目の素数さん2022/06/01(水) 12:31:13.79ID:0PtNjg1m
任意の正整数nに対して、方程式
x^n-nx+p=0
が整数解を持つような0でない整数pが存在することを示せ。
また、そのようなpは無数に存在するかどうか答えよ。

142132人目の素数さん2022/06/01(水) 12:58:19.50ID:+4ez585h
p=0のみ


lud20220601161131
このスレへの固定リンク: http://5chb.net/r/math/1653054402/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

TOPへ TOPへ  

このエントリをはてなブックマークに追加現在登録者数177 ブックマークへ


全掲示板一覧 この掲示板へ 人気スレ | Youtube 動画 >50 >100 >200 >300 >500 >1000枚 新着画像

 ↓「高校数学の質問スレ Part419 ->画像>2枚 」を見た人も見ています:
高校数学の質問スレPart406
高校数学の質問スレPart403
高校数学の質問スレPart408
高校数学の質問スレPart404
高校数学の質問スレPart405
高校数学の質問スレPart407
高校数学の質問スレPart401
高校数学の質問スレPart398
高校数学の質問スレPart402
高校数学の質問スレ Part421
高校数学の質問スレPart409
高校数学の質問スレ Part422
高校数学の質問スレ Part423
高校数学の質問スレ Part436
高校数学の質問スレ Part429
高校数学の質問スレPart400
高校数学の質問スレPart401
高校数学の質問スレPart398
高校数学の質問スレ Part412
高校数学の質問スレ Part417
高校数学の質問スレ Part438
高校数学の質問スレPart402
高校数学の質問スレ Part424
高校数学の質問スレ Part428
高校数学の質問スレ Part425
高校数学の質問スレ Part433
高校数学の質問スレPart405
高校数学の質問スレ Part426
高校数学の質問スレ Part435
高校数学の質問スレ Part439
高校数学の質問スレ Part430
高校数学の質問スレ Part422
高校数学の質問スレPart397
高校数学の質問スレPart397
【旭】高校数学の質問スレPart398
高校数学の質問スレ(医者・東大卒専用) Part438
高校数学の質問スレPart397
高校数学の質問スレ(国立医・東大合格者専用) Part439 (20)
大学数学の質問スレ Part1
面白い高校数学の問題貼ってくスレ
大学の線形代数学の質問。
高校数学のベクトルは何なの?
高校数学の理想のカリキュラム
中学数学を100とした場合の高校数学の難易度
今の高校数学のカリキュラムは理想に近い
ベクトルの外積って高校数学の教科書に載ってるんだね
高校数学飽きたから大学の数学すこし学びたい
高校受験。数学の質問。
小学生レベル質問スレ
大学学部レベル質問スレ 7単位目
大学学部レベル質問スレ 2単位目
大学学部レベル質問スレ 15単位目
大学学部レベル質問スレ 16単位目
大学学部レベル質問スレ 9単位目
大学学部レベル質問スレ 24単位目
大学学部レベル質問スレ 21単位目
大学学部レベル質問スレ 24単位目
大学学部レベル質問スレ 5単位目
大学学部レベル質問スレ 11単位目
「多分リーマン予想解いたけど質問ある?」ってスレッドが立ってる...
質問です、、、
高校数学って要は

人気検索: 小学生 パンチラ 4k繧ュ繝」繝ウ繧ョ繝」繝ォ 男子中高生  illegal porno video Marsha babko 精子 Starsession ・ェ・ウ縲?螂ウ蟄仙ー丞ュヲ逕溘??鬮伜ュヲ蟷エ蜈ィ陬ク Child あうアウpedo little girls 盗撮 16 years old porn
22:01:25 up 81 days, 23:00, 0 users, load average: 11.26, 13.19, 15.02

in 0.012832880020142 sec @0.012832880020142@0b7 on 070811