◎正当な理由による書き込みの削除について:      生島英之とみられる方へ:

高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚


動画、画像抽出 || この掲示板へ 類似スレ 掲示板一覧 人気スレ 動画人気順

このスレへの固定リンク: http://5chb.net/r/math/1624358305/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

1132人目の素数さん
2021/06/22(火) 19:38:25.04ID:wuaJB1iW
【質問者必読!!】
まず>>1-4をよく読んでね

数学@5ch掲示板用 掲示板での数学記号の書き方例と一般的な記号の使用例
http://mathmathmath.dotera.net/

・まずは教科書、参考書、web検索などで調べるようにしましょう。(特に基本的な公式など)
・問題の写し間違いには気をつけましょう。
・長い分母分子を含む分数はきちんと括弧でくくりましょう。
  (× x+1/x+2 ;  ○((x+1)/(x+2)) )
・丸文字、顔文字、その他は環境やブラウザによりうまく表示できない場合があります。
 どうしても画像を貼る場合はPCから直接見られるところに見やすい画像を貼ってください。
 ピクトはPCから見られないことがあるので避けてください。
・質問者は名前を騙られたくない場合、トリップを付けましょう。
 (トリップの付け方は 名前(N)に 俺!#oretrip ←適当なトリ)
・質問者は回答者がわかるように問題を書くようにしましょう。
 でないと放置されることがあります。
 (変に省略するより全文書いた方がいい、また説明なく習慣的でない記号を使わないように)
・質問者は何が分からないのか、どこまで考えたのかを明記しましょう。
 それがない場合、放置されることがあります。
 (特に、自分でやってみたのに合わないので教えてほしい、みたいなときは必ず書くように)
・回答者も節度ある回答を心がけてください。
・970くらいになったら次スレを立ててください。

※前スレ
高校数学の質問スレ Part412
http://2chb.net/r/math/1619929898/
2132人目の素数さん
2021/06/22(火) 19:39:18.23ID:wuaJB1iW
[2] 主な公式と記載例

(a±b)^2 = a^2 ±2ab +b^2
(a±b)^3 = a^3 ±3a^2b +3ab^2 ±b^3
a^3±b^3 = (a±b)(a^2干ab+b^2)

√a*√b = √(ab), √a/√b = √(a/b), √(a^2b) = a√b [a>0, b>0]
√((a+b)±2√(ab)) = √a±√b  [a>b>0]

ax^2+bx+c = a(x-α)(x-β) = 0 [a≠0, α+β=-b/a, αβ=c/a]
(α,β) = (-b±√(b^2-4ac))/2a  [2次方程式の解の公式]

a/sin(A) = b/sin(B) = c/sin(C) = 2R [正弦定理]
a = b cos(C) + c cos(B)      [第一余弦定理]
a^2 = b^2 + c^2 -2bc cos(A)    [第二余弦定理]

sin(a±b) = sin(a)cos(b) ± cos(a)sin(b) [加法公式]
cos(a±b) = cos(a)cos(b) 干 sin(a)sin(b)

log_{a}(xy) = log_{a}(x) + log_{a}(y)
log_{a}(x/y) = log_{a}(x) - log_{a}(y)
log_{a}(x^n) = n(log_{a}(x))
log_{a}(x) = (log_{b}(x))/(log_{b}(a)) [底の変換公式]

f '(x) = lim_[h→0] (f(x+h)-f(x))/h  [微分の定義]
(f±g) ' = f ' ± g '、(fg) ' = f 'g + fg ',
(f/g) ' = (f 'g-fg ')/(g^2)    [和差積商の微分]
3132人目の素数さん
2021/06/22(火) 19:40:08.56ID:wuaJB1iW
[3] 基本的な記号の使い方は以下を参照してください。
その他については>>1のサイトで。

■ 足し算/引き算/掛け算/割り算(加減乗除)
 a+b → a 足す b (足し算)     a-b → a 引く b (引き算)
 a*b → a 掛ける b (掛け算)     a/b → a 割る b (割り算)
■ 累乗 ^
 a^b     a の b乗
 a^(b+1)  a の b+1乗
 a^b + 1  (a の b乗) 足す 1
■ 括弧の使用
 a/(b + c) と a/b + c
 a/(b*c) と a/b*c
はそれぞれ、違う意味です。
 括弧を多用して、キチンと区別をつけてください。
■ 数列
 a[n] or a_(n)    → 数列aの第n項目
 a[n+1] = a[n] + 3  → 等差数列の一例
 Σ[k=1,n] a_(k)   → 数列の和
■ 積分
  "∫"は「せきぶん」「いんてぐらる」「きごう」「すうがく」などで変換せよ。
 (環境によって異なる。) ∮は高校では使わない。
 ∫[0,1] x^2 dx = (x^3)/3|_[x=0,1]
■ 三角関数
 (sin(x))^2 + (cos(x))^2 = 1, cos(2x) = (cos(x))^2 - (sin(x))^2
■ ヴェクトル
 AB↑ a↑
 ヴェクトル:V = [V[1],V[2],...], |V>, V↑, vector(V)
 (混同しない場合はスカラーと同じ記号でいい。通常は縦ヴェクトルとして扱う。)
■行列
 (全成分表示):M = [[M[1,1],M[2,1],...],[M[1,2],M[2,2],...],...], I = [[1,0,0,...],[0,1,0,...],...]
 (行 (または列) ごとに表示する. 例)M = [[1,-1],[3,2]])
■順列・組合せ
  P[n,k] = nPk, C[n.k] = nCk, H[n,k] = nHk,
■共役複素数
  z = x + iy (x,yは実数) に対し z~ = x - iy
4132人目の素数さん
2021/06/22(火) 19:41:03.20ID:wuaJB1iW
[4] 単純計算は質問の前に http://www.wolframalpha.com/ などで確認

入力例
・因数分解
  factor x^2+3x+2
・定積分
  integral[2/(3-sin(2x)), {x,0,2pi}]
・極限
  limit(t*ln(1+(1/t^2))+2*arctan(t))) as t->infinity
・無限級数
  sum (n^2)/(n!), n=1 to infinity
・極方程式
  PolarPlot[2/sqrt(3-sin(2t)), {t, 0, 2Pi}]

グラフ描画ソフトなど
・FunctionView for Windows
  http://hp.vector.co.jp/authors/VA017172/
・GRAPES for Windows
  http://tomodak.com/grapes/
・GRAPES-light for i-Pad
  http://www.tokyo-shoseki.co.jp/ict/textbook_app/h/003003
・GeoGebra for Windows / Mac OS X
  http://sites.google.com/site/geogebrajp/

入試問題集
 http://www.densu.jp/index.htm  (入試数学 電子図書館)
 http://www.watana.be/ku/    (京大入試問題数学解答集)
 http://www.toshin.com/nyushi/  (東進 過去問DB)
5132人目の素数さん
2021/06/22(火) 19:55:44.11ID:wHMWLZrV
   n!のn乗根は、 n→∞で発散しますが、どのくらいの速さで発散するのかを知りたい、そこで、n!のn乗根のグラフを描画するプログラムを書き

  1≦n≦100 程度で グラフを描画せよ
6132人目の素数さん
2021/06/22(火) 20:56:30.45ID:wuaJB1iW
スターリングの漸近展開式で
 (n!)^(1/n) ≒ n/e  (n >>1)
7132人目の素数さん
2021/06/22(火) 21:00:29.18ID:wuaJB1iW
[前スレ.980]

〔問題〕
n^4 + 14 が素数のとき
nは奇数かつ15の倍数に限る。
  (京都大 2021年 文系 第5問を改作)
8132人目の素数さん
2021/06/22(火) 21:07:02.06ID:wuaJB1iW
(略解)
・nが偶数のとき
 n^4 + 14 ≡ 0 (mod 2)

・nが3で割り切れないとき
 n^2 ≡ 1 (mod 3)     (フェルマーの小定理)
 n^4 + 14 ≡ 1^2 + 14 = 15 ≡ 0 (mod 3)

・nが5で割り切れないとき
 n^4 ≡ 1 (mod 5)     (フェルマーの小定理)
 n^4 + 14 ≡ 1 + 14 = 15 ≡ 0 (mod 5)

以上の場合はいずれも素数でない。
∴ n^4 + 14 が素数のとき
 nは奇数かつ15の倍数に限る。
(例) n = 165, 195, 255, 405, …


@YouTube

01:43,

@YouTube

04:52,

@YouTube

09:27,
9132人目の素数さん
2021/06/22(火) 22:19:21.16ID:wHMWLZrV
>>6

 誰もスターリングを使えなどと言っていない。  グラフを描けと言っているのだが
10132人目の素数さん
2021/06/22(火) 22:50:02.01ID:L/YA8dbz
困ったら先生に聞く
https://www.wolframalpha.com/input/?i=plot+e*(n!)^(1%2Fn)+n%3D1+to+100
見やすくするためにe倍した
11132人目の素数さん
2021/06/23(水) 01:29:32.38ID:WaiE7hFs
>>9
 発散する速さを知りたいなら >>6 でじゅうぶん
12132人目の素数さん
2021/06/23(水) 02:26:21.53ID:WQn8XVwO
   何らかの知識がないと解けない問題はクソ

  色々な数学オリンピックの問題のように

             「~のようにできる最小のkを求めよ」
             「~という条件があるとき、点A,B,C,Dは同一円周上にあることを示せ」 「外接円は元の外接円に接することを示せ」
             「うまく選ぶことで 書けることを示せ」
             「~のようにバッタが着地しないような飛び方の順番が存在することを示せ」

   などのように、背後にエレガント(華麗)なアイデアが隠れているような問題でない限りクソ
13132人目の素数さん
2021/06/23(水) 02:47:56.41ID:WQn8XVwO
          
     また教育上の観点からこの種の問題は数学的思考力を鍛えるのにちょうどいいから、回答を知っていても晒すべきではなく

   児童生徒に対して自分で考えて解かせるべき
14132人目の素数さん
2021/06/23(水) 03:02:56.03ID:vk7s8e0X
>>12
modも分からんくせにエラそうにww
15132人目の素数さん
2021/06/23(水) 03:05:13.66ID:EIIA9Z5i
>>13
ここは質問スレだしおじいさんが質問するとこじゃないよ
16132人目の素数さん
2021/06/23(水) 04:48:44.22ID:2W8+sGwC
係数は分かるが、数係数ってなんだ?
17132人目の素数さん
2021/06/23(水) 15:45:00.53ID:tHjyVTMH
modはおっさんが高校生の頃は教科書に載ってなかったんだろうね
それでも昔からある程度のレベルの高校に行っていればやってたはずなんだけど
来年高校に入学する学年からまた課程が変わるので質問に答える人はどんなのか見とくといい
18132人目の素数さん
2021/06/23(水) 16:44:21.81ID:mWMVQZJP
回答者は高校の課程など意識してなさそう(ダメじゃん)
19132人目の素数さん
2021/06/23(水) 16:47:44.20ID:JKGWMisO
剰余系とか言ってたな
20132人目の素数さん
2021/06/23(水) 17:10:12.45ID:DzymZReb
3つの円弧γ1、γ2、およびγ3が点AとCを接続します。これらの円弧は同じ位置にあります。弧γ2が弧γ1とγ3の間にあるように線ACによって定義される半平面で、 ポイントBはセグメントACにあります。 h1、h2、およびh3をBから始まり、同じ位置にある3つの光線とします。半平面、h2はh1とh3の間にあります。 iの場合、j 1、2、3は、Vijによって交点を示します。hiとγjで示すVijVkjVkViは湾曲した四辺形、その辺はセグメントVijVi、VkjVk、アークVijVkjとVi?Vkとなる円が存在する場合、この四辺形は外接円であると言います。これらの2つのセグメントと2つの円弧に触れます。湾曲した四辺形の場合はそれを証明する。V11V21V22V12、V12V22V23V13、V21V31V32V22は外接しており、次に湾曲した四辺形V22V32V33V23も外接しています。このことを証明せよ。
21132人目の素数さん
2021/06/23(水) 17:27:20.63ID:f9cQTkGY
>>20
元の英文載せてもらった方がいいんだけど笑
翻訳かけたやつじゃなくて
22132人目の素数さん
2021/06/23(水) 17:28:45.71ID:DzymZReb
>>21
  
    上の文章だけでどういう図形かを理解し、証明できない時点でただのクソ
23132人目の素数さん
2021/06/23(水) 17:30:11.45ID:f9cQTkGY
>>22
なんだおじさん、あなただったのか
24132人目の素数さん
2021/06/23(水) 17:43:58.72ID:DzymZReb
>>20は難しいように書いてあるが言ってることは


     直線があってその上側に両端を同じくする、円弧が3つあって、  直線上の一点から線3つを円弧に向かってひっぱると4つの囲まれたところができる。

  その囲まれたところに外接する4つの円が存在することを示せ、というだけ。
25132人目の素数さん
2021/06/23(水) 18:23:14.85ID:tqhvjrrO
新人おじさん英語苦手なんだ
26132人目の素数さん
2021/06/23(水) 18:38:16.00ID:mWMVQZJP
NG推奨
27132人目の素数さん
2021/06/23(水) 19:24:24.83ID:AaJ6/dpR
>>26

解けない問題を出されるとNGwwwwwwwwwwwwwwwwwww
28132人目の素数さん
2021/06/23(水) 19:59:52.18ID:rIMZ2hG4
どうせ解いてもむちゃくちゃな逆切れされるだけだからな。
相手にするだけ無駄。
29132人目の素数さん
2021/06/23(水) 20:02:41.03ID:AaJ6/dpR
  ↑  世界中に住んでいる50億人の誰が見ても  解いたといえるような解き方ができないだけ
30132人目の素数さん
2021/06/23(水) 20:05:32.93ID:rIMZ2hG4
世界の人口が50億と思ってるって、いつの時代の人?
31132人目の素数さん
2021/06/23(水) 20:10:07.09ID:qH1oxyDM
名前は50億人おじさんにしよう
32132人目の素数さん
2021/06/23(水) 20:13:21.95ID:rIMZ2hG4
おじさんってかおじいじゃね?
おじいが頑張って「wwww」とか書いてると思うと、なんかかわいく思えてきたw
33132人目の素数さん
2021/06/23(水) 20:19:37.08ID:AaJ6/dpR
   円の上に1,2,3,4・・・ 2^500というラベルの付いた点が適当な順序で存在する。この点の2点を結んだ線を弦と呼ぶことにし、
   選んだ弦の端点の和が等しくなるように、100個の互いに素な弦を選ぶことができることを示せ。
34132人目の素数さん
2021/06/23(水) 20:24:07.05ID:AlRQZ0/H
                                 ,.へ
  ___                             ム  i
 「 ヒ_i〉                            ゝ 〈
 ト ノ                           iニ(()
 i  {              ____           |  ヽ
 i  i           /__,  , ‐-\           i   }
 |   i         /(●)   ( ● )\       {、  λ
 ト-┤.      /    (__人__)    \    ,ノ  ̄ ,!
 i   ゝ、_     |     ´ ̄`       | ,. '´ハ   ,!
. ヽ、    `` 、,__\              /" \  ヽ/
   \ノ ノ   ハ ̄r/:::r―--―/::7   ノ    /
       ヽ.      ヽ::〈; . '::. :' |::/   /   ,. "
        `ー 、    \ヽ::. ;:::|/     r'"
     / ̄二二二二二二二二二二二二二二二二ヽ
     | 答 |        5 0 億 人       │|
     \_二二二二二二二二二二二二二二二二ノ
35132人目の素数さん
2021/06/23(水) 20:59:08.50ID:mWMVQZJP
>>31
マウンテン5ギガとか
36132人目の素数さん
2021/06/23(水) 21:12:13.80ID:U5si7j9g
50億人の時に教育を受けたなら50歳以上な気がするね
いい歳してこんなことしてるような大人にだけはなりたくないな
高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚
37132人目の素数さん
2021/06/24(木) 02:07:32.43ID:f1Zr58+4
>>20
>>33

  に対する解答はまだですか?解けないのか?頭が悪い上に人間性も終わってるな
38132人目の素数さん
2021/06/24(木) 02:15:22.41ID:zYd7O1Lt
>>37
「解答」ではなく「回答」な。
また、「頭が悪い上に人間性も終わってるな」のところ、文脈上「人間性が終わってる上に頭も悪いな」の方がいいな。回答が無いことによって頭が悪いことが判明したんだから。
39132人目の素数さん
2021/06/24(木) 02:19:58.80ID:f1Zr58+4
  >>20
>>33

   のレベルになると、問題になっている定理自体、証明も、驚異的にエレガントなものになるから、お前らの頭じゃどうにもならないもんな

  2つの問題とも、哲学的にみても、極めて普遍性が高く、思考力を要求し、既知定理などで解けない領域にあるから、

    考えても分からないお前ら涙目
40132人目の素数さん
2021/06/24(木) 03:15:37.61ID:f1Zr58+4
    元々前に出ていた  コーシーシュワルツの不等式を用いる問題の証明も  驚異的にエレガントな部類に入るのだが
   解いたやつは、コーシーによる証明が驚異的にエレガントだったと気づいていないし、あの証明で、コーシーから、
     等号成立条件が、  三平方の定理を満たすとき、とできること自体がエレガントだったとも気づいていない


    あの問題は  日本数学オリンピックの問題だが  >>20 などの問題に比べると、  驚異性や  エレガントさが足りない
41132人目の素数さん
2021/06/24(木) 04:37:37.46ID:8dmvq8o7
[分かスレ468]
http://2chb.net/r/math/1623928730/47-67
はなかなか笑える。。。

よしもと芸人を目指してる人もいるけど、芸風が頑固だからなぁ。
42132人目の素数さん
2021/06/24(木) 07:29:55.85ID:8dmvq8o7
>>40
a,b,c が正の実数のとき
 {bb+cc-aa, cc+aa-bb, aa+bb-cc} のうち0になるのは高々1つ。(49を参照)
∴ 等号は成立しない。
43132人目の素数さん
2021/06/24(木) 11:41:57.21ID:0FbcC+F8
   円の上に1,2,3,4・・・ 2^500というラベルの付いた点が適当な順序で存在する。この点の2点を結んだ線を弦と呼ぶことにし、
   選んだ弦の端点の和が等しくなるように、100個の互いに素な弦を選ぶことができることを示せ。
44132人目の素数さん
2021/06/24(木) 13:40:53.14ID:JqCq+HNe
a^2 と書かないのは何か意味があるんか?
45132人目の素数さん
2021/06/24(木) 14:16:11.19ID:0FbcC+F8
>>41

49 132人目の素数さん sage ▼ 2021/06/19(土) 17:42:25.44 ID:Izf7+Y5w [2回目]
(略証)
aa = A, bb = B, cc = C とおく。題意より
 0 ≦ A ≦ B+C, 0 ≦ B ≦ C+A, 0 ≦ C ≦ A+B,

(a+b+c)(a^2+b^2+c^2)(a^3+b^3+c^3) - 4(a^6+b^6+c^6)
≧ (a^2+b^2+c^2)^3 - 4(a^6+b^6+c^6)    (コーシー)
= (A+B+C)^3 - 4(A^3+B^3+C^3)
= 3A(B+C-A)^2 + 3B(C+A-B)^2 + 3C(A+B-C)^2 + 6(B+C-A)(C+A-B)(A+B-C)  (*)
> 0,


a^2をaaと書く辺りが相変わらずのクソだが、   コーシー以下の式変形が驚異的にエレガントであることに気づいていない。一般的な数学界でもこのような

   離れ業ができる人は限られている。そして  (*)のような式変形も驚異的に難しい。更に  (*)の式から

   A=B=C=0  または

  A=B+C  B=C+A  C=A+B  の場合に0になり、等号が成立することもみえている。
46132人目の素数さん
2021/06/24(木) 14:41:12.48ID:XzxqNK3J
VIPの高校数学スレにも湧いてたキチガイいるじゃん
47132人目の素数さん
2021/06/24(木) 15:00:59.02ID:0FbcC+F8
 
 
  
  3つの円弧γ1、γ2、およびγ3が点AとCを接続する。これらの円弧は同じ位置にあり、弧γ2が弧γ1とγ3の間にあるように線ACによって定義される半平面で、 点BはセグメントACにある。 h1、h2、およびh3をBから始まり、同じ位置にある3つの光線とする。半平面、h2はh1とh3の間にあり、 i、j =1、2、3は、Vijによって交点を示す。hiとγjで示すVijVkjVkViは湾曲した四辺形、その辺はセグメントVijVi、VkjVk、アークVijVkjとViVkとなる円が存在する場合、この四辺形の外接円であると言う。これらの2つのセグメントと2つの円弧に触れ、湾曲した四辺形の場合、V11V21V22V12、V12V22V23V13、V21V31V32V22は外接しており、次に湾曲した四辺形V22V32V33V23も外接していることを証明せよ。
48132人目の素数さん
2021/06/24(木) 15:05:03.76ID:9XDusPft
50億人おじさんビッパーだったの?
49132人目の素数さん
2021/06/24(木) 15:31:41.69ID:XzxqNK3J
>>48
「鳩の巣原理みたいな高度な知識が必要な問題はJMOに出ない!」
とかいう意味不明かつ根拠薄弱な主張を繰り返しててスルーされてた
50132人目の素数さん
2021/06/24(木) 15:37:52.06ID:0FbcC+F8
   鳩ノ巣原理っていいたいだけのクソなのがばれたからだろ
51132人目の素数さん
2021/06/24(木) 15:41:23.39ID:0FbcC+F8
   平成時代を通じて、 大体次のような数学上の定理を使ってる奴は特別な学校でズルをしたおっさんということがばれた

     鳩ノ巣原理  Holder 反転 ガロア拡大  群環体   体の公理から元  Degree  直和  obviously effective


激臭なんだよ
52132人目の素数さん
2021/06/24(木) 16:00:52.80ID:dsaHPb76
部屋割り論法、鳩の巣原理はその辺の高校でも使ってるフォーカスゴールドに載ってるな
青チャートとフォーカスゴールドくらいは見ておくといいよ
53132人目の素数さん
2021/06/24(木) 16:04:31.19ID:0FbcC+F8
  そんなの知らなくても俺は東大の文系に受かったけど

    東大前期試験で   積分  線形計画  整数  確率  しか出なかったし
54132人目の素数さん
2021/06/24(木) 16:11:37.80ID:XzxqNK3J
東大は2014年の整数問題で鳩の巣原理を使う問題があるけど
55132人目の素数さん
2021/06/24(木) 16:18:56.73ID:0FbcC+F8
   東京大学の前期試験は、採点答案も返ってこないし、合格者をどのように選んだのか証拠がない大学だからどうでもいい

     部分点とかも相当あるだろうし、  実際には150点しかとってないのに、370点とったことにして受からせてるらしいし
56132人目の素数さん
2021/06/24(木) 16:27:28.59ID:XzxqNK3J
採点答案は返ってこないけど点数開示はあるよね
そもそもなんで東大を引き合いに出してるの?鳩の巣原理がJMOに出るか否かの話じゃなかったの?
そもそも高度な知識を要する問題がJMOに出ない根拠って何?鳩の巣原理が高度ってのもよく分からん
57132人目の素数さん
2021/06/24(木) 16:43:17.35ID:0FbcC+F8
   開示された点数は、東大の入試事務室がパソコンに打ち込んだ数字にすぎず、それが得点という証拠はどこにもない

   東大生で点数開示をする人はあまりいないし、開示をしていない人もいるし、そんなものは何の根拠にもならない
58132人目の素数さん
2021/06/24(木) 16:51:02.93ID:0FbcC+F8
   バカクソ大学でなく  東大は素晴らしい大学だから、  裁量採点で受からせてるから人気があんだよ

     東大生のほとんどは、後日開示の得点開示とかゴミとしか思ってない  受かったことしか意味がないわけだから

   てめえのところは虐待的だしうざいから人気がない   ゴミが
59132人目の素数さん
2021/06/24(木) 16:57:26.98ID:0FbcC+F8
   さすがに東大も答案が白紙の状態だと合格は無理だが、  頑張って勉強しかなりのところまで答案に記載し問題をぶち抜いてれば東大には受かる
     全部解ける必要はないし、  全部解く奴はバカと言われている   東大は  センター試験は560点でもいいというのが最近の公式の流れ
   二次試験では  受からせるかどうかは東大の裁量だから  東大は人気がある

    お前を愛する者は誰もいない
60132人目の素数さん
2021/06/24(木) 17:13:44.01ID:XzxqNK3J
なるほど糖質か
61132人目の素数さん
2021/06/24(木) 18:06:50.90ID:JqCq+HNe
相手にせん方がええでー
62132人目の素数さん
2021/06/25(金) 00:42:34.46ID:4/YFPn9J
>>44
 字数を減らすだけ。他意はない。
 (受験生はマネしないでね)

>>45
a,b,c が正の実数ならば A>0, B>0, C>0,
等号が成り立つのは B+C-A = C+A-B = A+B-C = 0 の場合に限る。
しかし {B+C-A, C+A-B, A+B-C} のうち 0は高々1つだから
等号は成立しない。
63132人目の素数さん
2021/06/25(金) 01:20:33.89ID:lSTOqw2Z
>>62

  https://www.imojp.org/archive/challenge/old/jmo11mq.htm

   このJMOの問題の3つ目になるが、 a,b,cは0以上と書いている。  したがって、a=b=c=0  で等号が成立する

  またこの問題は、日本数学オリンピックに出題されたエレガントかつ難易度の高い問題なので自分で解けたなら褒めてやるが

    参考書を引き写しただけなら腐れと認める。

   コーシーによる式変形は多分当たっているのだろうが、できればコーシーを使わない別のエレガントな解法も求められる。
64132人目の素数さん
2021/06/25(金) 01:36:20.89ID:4/YFPn9J
[分かスレ468]
http://2chb.net/r/math/1623928730/47
は笑えるけど…

>>62
は別問題やから笑えまへんな。

よしもとも難しいな。。。
65132人目の素数さん
2021/06/25(金) 01:39:36.77ID:lSTOqw2Z
  まーひとついうならば、 上ではコーシーシュワルツによっているが、受験本番でコーシーによることを知らなければ終わりだから

    上の解答は既知定理、強力な定理を使ったものとして、エレガントさを欠く。 小学生や中学生でも思いつくようなより基礎的な解答が求められる。
66132人目の素数さん
2021/06/25(金) 01:46:37.98ID:lSTOqw2Z
  数学の授業ないし講義は、  数学は哲学の素晴らしさを教える点で有益だが、哲学の素晴らしさを教えるなら哲学科やゲーテを読み込めばよく
    一般人が数学ができる必要はないし、ゲーテも、幾何学に疎い者は哲学は分からないと言っていたが、数学者になる必要はないと言った

   またこういうご時世に難易度の高い数学は  昭和58年をもって文科省が学習指導要領から除外したから、数オリに出るような問題はほとんどの公立学校生徒は
 習っていないし解けない

   全国のほとんどの公立学校生徒等は、体育の授業に伴い、数学の講義を受けることとなるが、数オリレベルの難しい問題が解けるまでになる必要がない
67132人目の素数さん
2021/06/25(金) 03:44:30.23ID:8JOGLcP/
スペースで改行するタイプか
例外なく無能
68132人目の素数さん
2021/06/25(金) 06:47:05.55ID:Y11sfw3y
そもそもプラグマティズムに異議を唱えたいなら哲学板でやれよゴミ
69132人目の素数さん
2021/06/25(金) 07:05:36.18ID:/qtu2Wnq
プロおじは消えたのか?
今度は別のおじさんが出て来たのか
オリンピックおじさん?
70132人目の素数さん
2021/06/25(金) 07:24:20.82ID:4/YFPn9J
>>53
文系 (卒?) なら よしもと へドゾー
71132人目の素数さん
2021/06/25(金) 13:19:33.10ID:4/YFPn9J
1.
 m×nのマス目がある。次の条件を満たすように各マスを黒または白に塗る。
 条件:すべての黒マスについて、そのマスに隣接する黒マスの個数は奇数である。
 このとき、黒マスの総数は偶数であることを示せ。
 ただし、2つのマスが隣接するとは、それらが異なり、かつ一辺を共有することである。
 (JMO-2001 本選1)
72132人目の素数さん
2021/06/25(金) 13:26:52.77ID:4/YFPn9J
1. 背理法による。
 黒マスの総数が奇数だった、と仮定する。題意より
 すべての黒マスについて、そのマスに隣接する黒マスの数を合計すると奇数になる。
 一方、黒マスAが黒マスBに隣接する ⇔ 黒マスBが黒マスAに隣接する
 だから double counting で、合計すると偶数になる。(矛盾)

* 次元や配置と無関係に出るところがミソ。このスレでやるのはどうかと思うが。。。
73132人目の素数さん
2021/06/25(金) 15:33:02.83ID:fbsUIbYA
>>72


  その問題は簡単だからここで解答をさらすのはナンセンス

  >>20
>>33

  に取り組め。
74132人目の素数さん
2021/06/25(金) 16:31:56.37ID:cw/j7NqU
50億人のくせになまいきだぞ
75132人目の素数さん
2021/06/25(金) 17:06:51.66ID:fbsUIbYA
  >>33
>>47

 の解答はまだ?  そっちの解答が知りたいんだが
76132人目の素数さん
2021/06/25(金) 17:25:12.09ID:FkS3LvW9
>>75
もっとエレガントに頼んでくれなきゃやだ
77132人目の素数さん
2021/06/25(金) 19:25:17.68ID:2P3i6VE2
>>76
禿同
78132人目の素数さん
2021/06/25(金) 22:51:48.03ID:Bg9kLn3I
多岐川裕美
余貴美子
新藤恵美
志水季里子
横山めぐみ
萩尾なおみ

石井隆作品における6人の女優たち
彼女たちに共通するものって、なんでしょう?
79132人目の素数さん
2021/06/26(土) 00:15:19.74ID:736hUFax
脱いだ
80132人目の素数さん
2021/06/26(土) 02:37:19.44ID:2XSDpt0R
    >>33 >>47 の問題によって数学の本当に美しい問題はとてつもなく難しいこととお前が解けないことと

   カンニングクズ野郎大道ヤシであることがばれたな
81132人目の素数さん
2021/06/26(土) 06:04:04.33ID:U0t83wXJ
>>53
理系 Vs. 文系
http://2chb.net/r/math/1572537155/l50
http://2chb.net/r/math/1501511401/l50
82132人目の素数さん
2021/06/26(土) 11:30:41.09ID:U0t83wXJ
4.
pを任意の素数、mを任意の自然数とする。
このとき自然数nをうまく選べば、p^nを10進法で表したときその数字列に0が連続してm個以上並ぶ部分があるようにできることを示せ。
 (JMO-2001 本選 4)
83132人目の素数さん
2021/06/26(土) 11:46:27.18ID:U0t83wXJ
4.
 floor(x) = [x],
 x - [x] = {x}
とおく。
10^(m+2) = M とおき [0,1) をM等分する。
さらに log_10(p) = P とおく。
 0, {P}, {2P}, …, {MP} のM+1個のうち、2つ以上が同じ小区間にある。(←鳩ノ巣)
 0 < {iP} - {jP} < 1/M   (i≠j)
 0 < {(i-j)P} < 1/M,
i>j のときは n = i-j とする。
i<j のときは
 -1/M < {jP} - {iP} = -k < 0
 0 < 1 - k[1/k] < 1/M,
 n = (j-i)[1/k] とする。
(この辺、われながら面倒くさい。) そうすると
 [nP] < nP < [nP] + 1/M,
 10^[nP] < p^n < 10^[nP] * 10^(1/M)
   = 10^[nP] * e^(2.3025851/M)
   < 10^[nP] * (1 + 10/M)
   = 10^[nP] * (1 + 1/10^(m+1))
∴ p^n を10進法で表わしたとき、1のあとに0が連続してm個以上並ぶ。
84132人目の素数さん
2021/06/26(土) 12:01:10.63ID:DD+Z3We6
>>83

 クソ
85132人目の素数さん
2021/06/26(土) 14:06:59.44ID:DD+Z3We6
    数字列に0が連続してm個以上並ぶ部分があるようにできる


   という整数問題は、もう相当使い回されていることで、知識があるかないかの問題になっている。東大の問題にもこれと同じものがでているが

   陳腐にもほどがある。誰も興味がないんだよ
86132人目の素数さん
2021/06/26(土) 16:05:41.99ID:g1urcFUe
自分が分からない問題は全部クソw
87132人目の素数さん
2021/06/26(土) 16:08:14.56ID:g1urcFUe
数学できないやつってすぐ問題にケチつけるよね。
場合によっては解答にもケチつける。

いや、一般論ですよw
特定の誰かを指してるわけではありません。
88132人目の素数さん
2021/06/26(土) 16:43:04.57ID:DD+Z3We6
   コーシーの問題など、それなりに、エレガントという意味で最上級の問題にはケチをつけてなくて評価している
     鳩ノ巣 (ケツノ巣) とか 0が何個並ぶとか  数学界ではとっくに飽きられているくだらん問題にはケチをつけている
   なぜならロシア、東欧、フランスなどの数学ガチ勢どもは、こんなくだらん問題よりも、もっとエレガントという意味で驚異的な問題を死ぬほど解いてるからだ
89132人目の素数さん
2021/06/26(土) 17:36:54.91ID:iGd5pscu
生田勇人(39)
高知市朝倉中学校卒業
恐喝と暴行、偽証、傷害により逮捕、起訴。

取り調べで「事実無根」と容疑を否認。
卓球所に松岡学(39)と出入りし賭け試合を被害者に強要、一回ミスったら1000円払えというルールを強要。
2万円を取ろうとした。親にチクったらただじゃ済まんぞと被害者の胸倉をつかみ2000円を脅し取り、後日腹を殴った疑い。
生田勇人の両親も被害者の親にたかっており親子でたかっていた疑惑がある。
90132人目の素数さん
2021/06/26(土) 17:49:53.34ID:g1urcFUe
>>88
ではここはスレ違いなので、「ロシア、東欧、おフランスのエレガントな数学」というスレでも作ってお楽しみ下さい。
91132人目の素数さん
2021/06/26(土) 19:12:07.31ID:o4Ehea1n
投票数500票で、上位2人が当選する選挙がおこなあれる(同票数がいて決まらない倍はじゃんけんで決着)。
立候補はA~Eの5人で、開票途中集計で
A 90票、 B 75票、 C 70票、 D 25票、 E 10票
となった。Bは少なくともあと何票取れば確実に当選するといえるか。

「上位1人が当選する場合」まら分かるのですが、この問題のように上位2人の場合はどのように考えるといいでしょうか。
92132人目の素数さん
2021/06/26(土) 19:17:38.47ID:lYgrfpCY
誤字具合がねぇ...
93132人目の素数さん
2021/06/26(土) 19:52:27.44ID:g1urcFUe
>>91
上位2位に入るには
500/3+1=167票必要。
94132人目の素数さん
2021/06/26(土) 22:31:13.12ID:g1urcFUe
>>93
現状の得票考えて無かった。
465/3+1の156票か。
てかこれ高校数学?整数問題?
95132人目の素数さん
2021/06/27(日) 13:46:14.44ID:ZSF80QlW
n^2=m^2+1600を満たす正の整数m.nは何組あるか  お願いします
96132人目の素数さん
2021/06/27(日) 13:47:42.71ID:a5UgXhc9
>>95
積の形にするだけ
97132人目の素数さん
2021/06/27(日) 14:29:59.89ID:movehHSD
(n+m)(n-m) = 1600 = 2^6 * 5^2,

(n+40)(n-40) = m^2,
がある。
ただし n>m, n±m は偶数
98132人目の素数さん
2021/06/27(日) 14:36:31.68ID:movehHSD
7組
(m,n) = (9,41) (30,50) (42,58) (75,85) (96,104) (198,202) (399,401)
99132人目の素数さん
2021/06/27(日) 18:02:21.28ID:nQJ95lNK
>>98
m,nともに10と互いに素だと原始ピタゴラス数になりますね。(9,41)(399,401)
というわけで便乗して質問します。ある平方数から得られる原始ピタゴラス数となる組は必ず2つとなることを証明出来ますか?
100132人目の素数さん
2021/06/27(日) 18:12:50.01ID:QbMHNO74
できない
仮定が誤っている
101132人目の素数さん
2021/06/28(月) 00:23:16.07ID:HMTQKJp4
A~Eの5人が、図のようなトーナメント方式でじゃんけんを行った。
このとき、トーナメント全体で、あいこを含めてちょうど5かいのじゃんけんで優勝者が決定する確率はいくらか。

図のようなトーナメント とは
 第1試合「A 対 B」 第2試合「第1試合の勝者 対 C」
 第3試合「D 対 E」 第4試合「第2試合の勝者 対 第3試合の勝者」
という形式です。
102132人目の素数さん
2021/06/28(月) 04:01:29.10ID:r1cntibv
>>99
・奇素数 pについては
 (n-m)(n+m) = p^2
 (n-m, n+m) = (1, p^2)
 (m, n) = ((p^2 -1)/2, (p^2 +1)/2)   1つ


・奇素数 p<q<r について
 (n-m)(n+m) = (pqr)^2,

 (n-m, n+m) = ((pq)^2, r^2)
       ((pr)^2, q^2)
       ((qr)^2, p^2)
       ((pqr)^2, 1^2)
(n-m, n+m) は互いに素だから (m,n) も互いに素    4つ

(例)
 p=3, q=5, r=7, pqr=105.
 (n-m, n+m) = (49, 225) (25, 441 (9, 1225) (1, 11025)
 (m, n) = (88, 137) (208, 233) (608, 617) (5512, 5513)
103132人目の素数さん
2021/06/28(月) 09:58:43.59ID:r1cntibv
というわけで便乗して質問します。
異なるk個の奇素数の積の平方から得られる原始ピタゴラス数となる組は
2^(k-1) 個となることを証明出来ますか?
104132人目の素数さん
2021/06/28(月) 15:20:09.67ID:AjBqRsWJ
sin(x)=sin(y)
をxについて解くとき、どんな風に表現したらいいですか?
105132人目の素数さん
2021/06/28(月) 16:53:00.00ID:r1cntibv
 x = 2nπ + y または x = (2n+1)π - y,
 nは整数。
かな。

少し凝って解くなら
0 = sin(x) - sin(y) = 2sin((x-y)/2)cos((x+y)/2),
(x-y)/2 = nπ または (x+y)/2 = (n+1/2)π
 x = 2nπ + y または x = (2n+1)π - y,
106132人目の素数さん
2021/06/28(月) 16:59:56.41ID:AjBqRsWJ
>>105
∃n?∀n?
107132人目の素数さん
2021/06/28(月) 21:29:26.24ID:NHVME05u
x = π/2 ± (π/2 - y) + 2nπ でもいいぞ
108132人目の素数さん
2021/06/29(火) 03:35:09.94ID:c8b4HNEj
高校数学の範囲内で示せるかが分からないのですが

連続な関数f(x)について
任意の実数xでf(x)が
f(f(x)-x)=f(f(x)+x)
を満たすならばf(x)は定数関数である

は正しいですか??
自分はこの命題が正しいと思ったのですがどうなんでしょうか
109132人目の素数さん
2021/06/29(火) 05:41:18.89ID:FnD0DldR
>>87
助言よりも罵倒に喜びを見出す輩のことだね。
数学ができるできないには無関係ではと思う。
110132人目の素数さん
2021/06/29(火) 09:06:26.39ID:0pwboR7z
と罵倒するアホ
111132人目の素数さん
2021/06/29(火) 11:09:33.63ID:
>>109
自己紹介かな?
112132人目の素数さん
2021/06/29(火) 11:14:30.07ID:Az4lAWxJ
黙ってろ二人とも
113132人目の素数さん
2021/06/29(火) 12:36:21.19ID:0pwboR7z
とバカが煽る
114132人目の素数さん
2021/06/29(火) 12:53:05.94ID:Az4lAWxJ
うわ何だこの無自覚ブーメランの「無敵の人」は
115132人目の素数さん
2021/06/29(火) 12:56:05.86ID:oYDFQX9J
直近のレス達がとても数学板のものとは思えないレベルで笑う
高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚
116132人目の素数さん
2021/06/29(火) 13:08:32.20ID:bpnxUqKD
>>114
「とんでも戦士ムテキング」だよ

 
@YouTube

01:19,
 
@YouTube

03:11,
 
@YouTube

03:07,
117132人目の素数さん
2021/06/29(火) 15:23:14.53ID:06rJFAvW
なつかしい
今度リバイバルされるんだっけか
118132人目の素数さん
2021/06/29(火) 15:57:18.39ID:YPePZKDj
3つの円弧γ1、γ2、およびγ3が点AとCを端点として接続します。これらの円弧は同じ位置にあります。弧γ2が弧γ1とγ3の間にあるように線ACによって定義され
る半平面で、 BはセグメントACにあります。 h1、h2、およびh3をBから始まり、同じ位置にある3つの光線とします。半平面、h2はh1とh3の間にあります。 iの場合、j 1、
2、3は、Vijによって交点を示します。hiとγjで示すVijVkjVkViは湾曲した四辺形、その辺はセグメントVijVi、VkjVk、アークVijVkjとVi?Vkとなる円が存在する場合、こ
の四辺形は外接円であると言います。これらの2つのセグメントと2つの円弧に触れます。湾曲した四辺形V11V21V22V12、V12V22V23V13、V21V31V32V22は外接し
ており、次に湾曲した四辺形V22V32V33V23も外接していることを証明せよ。
119132人目の素数さん
2021/06/29(火) 16:08:59.99ID:z2PjXOMB
>>105
で、nは任意?存在?
120132人目の素数さん
2021/06/29(火) 21:12:56.36ID:K1ErXP8/
こいつは何を言ってるんだ?
121132人目の素数さん
2021/06/29(火) 21:16:25.72ID:z2PjXOMB

@YouTube


では存在って言ってるけど何で存在なのか分からへん
122132人目の素数さん
2021/06/29(火) 21:44:37.28ID:0pwboR7z
>>114
と知恵遅れが書く
123132人目の素数さん
2021/06/29(火) 23:33:10.23ID:rW1D2Pis
Test
124132人目の素数さん
2021/06/30(水) 00:22:44.79ID:i7lsBAA0
>>118
意味不明な上にマルチするなゴミが
125132人目の素数さん
2021/06/30(水) 01:14:30.49ID:Ye3JZlow
>>124


バカはお前だ。 問題の内容は簡単で、  直線の上に端点が等しい3つの円の弧があって、その円の半径上にBがあり、そこから、上半平面に向かって

  Bから3つの線が出ている。この3つの線と円弧で囲まれる4つの領域に円が内接していることを証明せよというのを言い換えただけだ。
126132人目の素数さん
2021/06/30(水) 04:27:41.71ID:d+aRw8HS
なら最初からそう言えばいいのに…
とオモタ
127イナ ◆/7jUdUKiSM
2021/06/30(水) 05:48:22.49ID:Tyat46T3
>>101違うかもしれんけど。
あいこの確率は1/3
勝負ありの確率は2/3
一回目あいこで二回目勝負ありの確率は(1/3)(2/3)=2/9
トーナメントの四つの対戦について、
うち三つが一回目で勝負ありだとすると、
その確率は(2/3)^3
これと先程求めた一回目あいこで二回目勝負ありの確率2/9をかけあわせ、
求める確率は、(2/3)^3(2/9)=16/243
百分率でいうと、
1600÷243=6.584……(%)
128イナ ◆/7jUdUKiSM
2021/06/30(水) 06:07:53.31ID:wzblojj/
>>127
>>101
押さえで7/9
77.77……%
129イナ ◆/7jUdUKiSM
2021/06/30(水) 07:06:27.71ID:Kf1GwOjr
>>128訂正。
一回目で勝負がつく確率は2/3
一回目あいこで二回目で勝負がつく確率は(1/3)(2/3)=2/9
トーナメント4試合のうち3試合が一回目で勝負がつき、1試合だけが一回目あいこで二回目で勝負がつく場合の数は4通り。
∴(2/3)^3(2/9)×4=2^6/3^5=64/243
百分率でいうと6400/243=26.337448……(%)
130132人目の素数さん
2021/06/30(水) 08:33:31.02ID:U6u3j46h
>>125
だったら最初からそう言えよゴミが
131イナ ◆/7jUdUKiSM
2021/06/30(水) 09:29:57.68ID:Kf1GwOjr
>>129
>>91
80票
∵500-(100+100+70)=230を、
上位3者に振り分けると、
90-75=15
90-70=20
まず15+20=35を2位3位に充当し、
残り230-35=195を3等分、195/3=65
∴15+65=80
132イナ ◆/7jUdUKiSM
2021/06/30(水) 09:36:47.96ID:Kf1GwOjr
>>131訂正。
>>91
じゃんけんで負けて落選することがありうるので、
81票とれば確実。
133132人目の素数さん
2021/06/30(水) 10:45:26.92ID:IoBhl6GB
>>101
指折数えたら
0.09876543
約1割弱になった。
あんまり答に自信がないけど。
134132人目の素数さん
2021/06/30(水) 12:03:22.47ID:j6ufoio1
>>133
それの4倍
135132人目の素数さん
2021/06/30(水) 12:05:28.19ID:x6ziGH0w
>>133
もっと高くないか?
136132人目の素数さん
2021/06/30(水) 12:06:51.49ID:x6ziGH0w
>>134
もうちょっと低くない?
8/243と違うんか?
137132人目の素数さん
2021/06/30(水) 12:09:18.99ID:x6ziGH0w
盛大に間違えた
64/243?
138132人目の素数さん
2021/06/30(水) 12:13:43.37ID:j6ufoio1
うん
>>137であってると思う

134の2/3倍
139132人目の素数さん
2021/06/30(水) 12:36:09.46ID:j6ufoio1
プレーヤーの数をn(≧2)、決着がつくまでのじゃんけんの回数をk(≧n-1)としたときの一般解

試合数はn-1だから、あいこの回数がk-(n-1)
1回のじゃんけんにおけるあいこの確率を、他の条件とは独立につねに1/3とするときの確率は
(k-1)C(k-(n-1))×(2/3)^(n-1)×(1/3)^(k-(n-1))=((k-1)!×2^(n-1))/((k-n+1)!×(n-2)!×3^k)
140132人目の素数さん
2021/06/30(水) 14:43:33.48ID:7Jhfe85g
>>133

これはC,D,Eが5回のジャンケンで優勝する確率で
A,Bが5回のジャンケンで優勝する確率はその半分なので
結局、その4倍ってことになるんだな。

32/81 = 0.3950617
141132人目の素数さん
2021/06/30(水) 14:54:32.69ID:7Jhfe85g
>>133
トーナメント全体で5回だったんだな。
優勝者のジャンケン回数が5回で計算していた。
>133と140は撤回します。
142132人目の素数さん
2021/06/30(水) 17:19:16.84ID:KjwpvM4W
>>132
イナさんはプログラミングスキルとかあるの?
143132人目の素数さん
2021/06/30(水) 19:06:26.99ID:7Jhfe85g
改題

A~Eの5人が、図のようなトーナメント方式でジャンケンを行った。
このとき、優勝者のジャンケン回数(あいこも1回と数える)が5回の確率はいくらか?

図のようなトーナメント とは
 第1試合「A 対 B」 第2試合「第1試合の勝者 対 C」
 第3試合「D 対 E」 第4試合「第2試合の勝者 対 第3試合の勝者」
という形式です。
144イナ ◆/7jUdUKiSM
2021/06/30(水) 20:23:06.07ID:/ZH6+6bu
>>132
>>142就職を斡旋してくださるのですか?
確率はセンター試験と赤本とか過去問ぐらいの知識です。授業は高3であったと思うけど。
145132人目の素数さん
2021/06/30(水) 20:57:07.68ID:rl8Gc6sJ
>>144
>>143
A,Bが5回じゃんけんして優勝する確率は、
(2/3)^3(1/3)^2=8/243
C,D,Eが5回じゃんけんして優勝する確率は、
(2/3)^2(1/3)^3=4/243
優勝者が5回じゃんけんした確率は、
(8/243)×2+(4/243)×3=(16+12)/243
=28/243
146132人目の素数さん
2021/06/30(水) 21:17:16.61ID:KjwpvM4W
>>144
ごめん。ごめん。なんとく訊いてみただけです。
数学の知識はPythonとか機械学習に必要そうなので。
147132人目の素数さん
2021/07/01(木) 00:33:20.95ID:EHDdIwy1
袋から碁石を取り出して一直線上に並べる
確率は1/2で白または黒である
取り出した石は袋に戻す

色が連続する部分の数をrと定める

◯●◯◯◯●●

なら、◯,●,◯◯◯,●● でr=4

n個の碁石を並べる時、rが3の倍数になる確率を表す式を求めよ

簡単だと思ったら全然解けないのでご教授ください
148132人目の素数さん
2021/07/01(木) 02:57:05.46ID:3LOTp7It
>>147
石の色の並びは , の入れ方で決まるから
, の入れ方を数えればいいんぢゃね?
 C(n-1,r-1) /2^{n-1}

生成関数
G(x) = (1/2)^{n-1} Σ[r=1,n] C(n-1,r-1)x^r = x((1+x)/2)^(n-1)
を使うと、rが3の倍数になるのは
Σ[3|r] C(n-1,r-1)/2^{n-1}
 = (1/3)(G(1) + G(ω) + G(ω~))
 = (1/3)(1 + ω((1+ω)/2)^{n-1} + ω~((1+ω~)/2)^{n-1})
 = (1/3)(1 + (1/2)^{n-1}・[ω^{(n+1)/2} + (ω~)^{(n+1)/2}])
 = (1/3)(1 + (1/2)^{n-1}・[e^{i(n+1)π/3} + e^{-i(n+1)π/3}])
 = (1/3)(1 + (1/2)^{n-1}・[2cos((n+1)π/3)]),
 = (1/3)(1 - 2(1/2)^{n-1})     (n≡2 (mod 6))
 = (1/3)(1 - (1/2)^{n-1})     (n≡1,3 (mod 6))
 = (1/3)(1 + (1/2)^{n-1})     (n≡0,4 (mod 6))
 = (1/3)(1 + 2(1/2)^{n-1})     (n≡-1 (mod 6))
かな
149 【凶】
2021/07/01(木) 06:39:13.93ID:VU5OSgjq
>>145
>>147とうあんたんあがーるいぱねーま♪
rが3の倍数になる確率は、
nが任意の自然数だとすると、
白のあと黒または黒のあと白が出る確率が1/2だから、
(n-1)/2の数だけ色の変わり目があると考えると、
色が連続する部分の数はr=(n-1)/2+1
rは自然数だから、r=[(n-1)/2]+1
n=1,2,3,4,5,6,7……のとき、
r=1,1,2,2,3,3,4……
rが3の倍数になる確率はnが3の倍数である確率と等しいと考えられる。
∴nの値に拘らず1/3
150 【小吉】
2021/07/01(木) 07:07:47.21ID:vxmbqVuA
>>149訂正。
Tall and tan and young and lovely
The girl from Ipanema goes walking
151132人目の素数さん
2021/07/01(木) 08:03:06.90ID:3LOTp7It
Astrud Gilberto
Stan Getz
152132人目の素数さん
2021/07/01(木) 14:48:55.69ID:bm5BcgXY
>>148
数弱なので理解するのに時間かかりそうです

nにテキトーな値入れて確かめてみた結果正しいっぽいですね…素晴らしいです有難うございました(><)
153132人目の素数さん
2021/07/01(木) 15:23:55.56ID:3LOTp7It
申し遅れましたが、
ω=e^(i(2π/3)),  ω~=e^(-i(2π/3)) は1の3乗根です。
154132人目の素数さん
2021/07/01(木) 15:32:56.78ID:D+xhqZwK
>>147
nを1~100で各々10万回並べて実験してみる。

高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚


オマケ( R言語ver4.10)
sim=\(n=100){
'%|%'=\(x,fun) fun(x)
sample(0:1,n,replace = TRUE) %|% rle %|% \(x) x$lengths %|% length %%3 %|% \(x) x%%3==0
}
calc= Vectorize(\(n,k=1e5) mean(replicate(k,sim(n))))
n=1:100
r=calc(n)
plot(n,r,bty='l',pch=19)
155132人目の素数さん
2021/07/01(木) 15:43:05.94ID:JOANZA5t
尿瓶消えて平和だと思ったのにまーた出てきたよ
156132人目の素数さん
2021/07/01(木) 16:45:17.64ID:D+xhqZwK
尿瓶洗浄係(=職種の言えない医療従事者、どうもシリツ卒らしい)へのレスはこれ!

【ウハも】 開業医達の集い 35診 【粒も】
http://2chb.net/r/hosp/1618100419/362
362 名前:卵の名無しさん[] 投稿日:2021/06/12(土) 07:56:12.71 ID:V8hodBbV
このキチガイ入院させよ
157132人目の素数さん
2021/07/01(木) 16:50:55.67ID:D+xhqZwK
乱数発生させてのシミュレーション(モンテカルロ法)は検算に役立って( ・∀・)イイ!!
元々は、中性子が物質中を動き回る様子を探るためにスタニスワフ・ウラムが考案しジョン・フォン・ノイマンにより命名された手法。
158132人目の素数さん
2021/07/01(木) 16:54:46.30ID:JOANZA5t
尿瓶はいつまでその爺臭い顔文字使い続けるの?
159132人目の素数さん
2021/07/01(木) 17:08:43.48ID:e4UACQDp
尿瓶ジジイは意地になってるからねw
160132人目の素数さん
2021/07/01(木) 17:32:05.24ID:huodi0Rj
しつこく攻撃する奴も気持ち悪いな
161132人目の素数さん
2021/07/01(木) 18:09:55.49ID:B/MaIMNu
またキチガイプロおじが出て来たのかよ
数学の知識が欠如してるのによw
162132人目の素数さん
2021/07/01(木) 18:15:54.55ID:IewAyqBe
プロおじは口で言ってやって分かる頭ぁしてないんだから
拳で言ってやって脊髄で分かる様にしてやらなきゃ分からないだろ、
手始めにプロおじを満ち潮が過ぎたばかりの浜に首から下を埋めてやらないといけない。
くれぐれも埋めた事を忘れて満ち潮になるまで飲んだ暮れてたりなんかするなよ?
163132人目の素数さん
2021/07/01(木) 23:23:54.51ID:q7hUK4WZ
教えて下さい。よろしくす。

x、y、zは互いに異なる数であり、
x(1-2y)=y(1-2z)=z(1-2x)を満たしている。
(1)x(1-2y)の値を求めよ。
(2)さらにx+y+z+2xy+2yz+2zx=0が成り立つとき、
 x、y、zの値を求めよ。
164132人目の素数さん
2021/07/02(金) 00:29:37.76ID:bOpw7niB
計算すりゃ良いじゃん
165132人目の素数さん
2021/07/02(金) 02:20:29.50ID:GUmCpMgt
>>163
(1)
x(1-2y)=y(1-2z)=z(1-2x) より、x-y=-2y(z-x)、y-z=-2z(x-y)、z-x=-2x(y-z)
よって、x-y=-2y(z-x)=4xy(y-z)=-8xyz(x-y)
x-y≠0 より、xyz=-1/8
R=x(1-2y)=y(1-2z)=z(1-2x) とする。(このとき、xy=(x-R)/2 である)
R^2=x(1-2y)y(1-2z)=xy(1-2y-2z+4yz)=xy(1-2y(1-2z))-2xyz=(1-2R)(x-R)/2+1/4=(x-R-2xR+2R^2)/2+1/4
これを整理して 2(2x+1)R=2x+1 また、対称性より 2(2y+1)R=2y+1 が言える。
x≠y より、2x+1 と 2y+1 のいずれかは0でない。よって、R=1/2

(2)
x+y+z+2xy+2yz+2zx=0…(a)
x+y+z-2xy-2yz-2zx=3R=3/2 …(b)
(a)+(b)より2x+2y+2z=3/2 よって x+y+z = 3/4
(a)-(b)より4xy+4yz+4zx=3/2 よって xy+yz+zx = -3/8
x,y,z は三次方程式 X^3+(-3/4)X^2+(-3/8)X+1/8=0 の解となる。
よって {x,y,z} = {-1/2,1/4,1}
166132人目の素数さん
2021/07/02(金) 05:50:15.77ID:cCOB5Dag
(x,y,z) = (-1/2, 1, 1/4) (1, 1/4, -1/2) (1/4, -1/2, 1)
元々の式は対称式じゃない…
167132人目の素数さん
2021/07/02(金) 06:35:39.85ID:cCOB5Dag
(1)
xyz = -1/8,
 x=-c/2b, y=-a/2c, z=-b/2a  (abc≠0)
を与式に入れて
 (-b-c)/2a = (-c-a)/2b = (-a-b)/2c = R,

 2Ra + b + c = 0,    ( ×(-1)
 a + 2Rb + c = 0,    ( ×R
 a + b + 2Rc = 0,    ( ×R
より
 2RR+R-1 = 0,
 (R+1)(2R-1) = 0,
 R=-1 のとき a=b=c となり題意に不適。
∴ R = 1/2,
168132人目の素数さん
2021/07/02(金) 06:55:45.25ID:GUmCpMgt
>>166
なるほど

詰めを誤った
169132人目の素数さん
2021/07/02(金) 07:24:41.85ID:cCOB5Dag
>>154
 P(3m+1) = P(3m+2)
170132人目の素数さん
2021/07/02(金) 16:36:11.48ID:cCOB5Dag
>>154
線形漸化式:
 P(n+1) = [2P(n) - P(n-1) + 1]/4,
171132人目の素数さん
2021/07/02(金) 17:23:14.08ID:cCOB5Dag
>>169
 P(n) = Q( floor((2n+1)/3) ),
とおくと
 P(3m) = Q(2m),
 P(3m+1) = P(3m+2) = Q(2m+1),

線形漸化式:
 Q(m+1) = (3Q(m) - (-1)^m・Q(m-1))/(3 - (-1)^m),
172132人目の素数さん
2021/07/02(金) 22:19:56.26ID:1LdxwJih
ところで「チンポがシコシコする」という日本語表現は、学術的に正しいと言えるのか?

チンポ「を」シコシコするのではなくて、チンポ「が」シコシコする。この場合、「チンポ」は主語となる。

オブジェクト指向で言う「集約」は2種類あって、全体(俺)と部分(チンポ)が繋がっている場合と、
全体(俺)と部分(チンポ)が別々になっている場合とが考えられる。けれども「チンポ」はそれ自体
が独立した生き物であり、所有者の意思とは無関係に、自ら勃起して「シコシコする」。
例えば寝てる時にエロい夢みて朝起きてみたらチンコが勃起して射精してたとか。

違うか?

「胸がドキドキする」は良いが、「チンポがシコシコする」はダメな理由を、50字以内で述べろ!
173132人目の素数さん
2021/07/02(金) 22:24:56.74ID:7A8mp550
>「チンポがシコシコする」という日本語表現

そんな日本語表現はない
174132人目の素数さん
2021/07/02(金) 22:29:48.04ID:tKaa3fm3
前に「チンポがシコシコする」の例を書いたと思うけど、どこか忘れた
175132人目の素数さん
2021/07/03(土) 01:58:12.21ID:hxTok7HO
ガキか
176イナ ◆/7jUdUKiSM
2021/07/03(土) 02:34:36.53ID:28uMF+kN
>>150
>>163(1)
x(1-2y)=tとおくと、
y=1/2のときt=(1/2)(1-2z)=z(1-2x)
1/2-z=z-2xz=0
z=1/2,1/2-x=0
x=1/2 これは不適(∵x≠z)
x=t/(1-2y)
対称性から同様にy=t/(1-2z),z=t/(1-2x)
zの値をyの式に代入しy=t/{1-2t/(1-2x)}
y=t(1-2x)/(1-2x-2t)
x=t/(1-2y)=t/{1-2t(1-2x)/(1-2x-2t)}
=t(1-2x-2t)/(1-2x-4t+4tx)
x-2x^2-4tx+4x^2t=t-2tx-2t^2
4x^2t+x-2x^2-2tx-t+2t^2=0
2(2t-1)x^2-x(2t-1)+t(2t-1)=0
(2x^2-x+t)(2t-1)=0
{2(x-1/4)^2-1/8+t}(2t-1)=0
t=1/2または(x=1/4かつt=1/8)
x=1/4,t=1/8をx(1-2y)=tに代入すると、
(1/4)(1-2y)=1/8
1-2y=1/2
2y=1/2
y=1/4 これは不適(∵x≠y)
∴t=x(1-2y)=1/2
(2)x=1/(2-4y),y=1/(2-4z),
z=1/{1-2/(2-4y)}
=1/{1-1/(1-2y)}
=(1-2y)/(1-2y-1)
=(2y-1)/2y
y=1/2,z=0,x=-1/4
こうかなぁという感じ。
177132人目の素数さん
2021/07/03(土) 03:41:14.98ID:QGVp56H0
>>148
Σ[3|r] C(n-1,r-1)/2^{n-1}
 = (1/3)(G(1) + G(ω) + G(ω~))

どういう定理?で変形できるのかが分かりませんでした…
教えていただけると幸いです

rが4で割り切れる数だったら4乗根が出てくる…??

その後の式変形は理解できました(><)
178132人目の素数さん
2021/07/03(土) 05:00:17.52ID:ok1Wg9w6
ω, ω~ を1の3乗根とすると
(1/3)(1^r + ω^r + (ω~)^r)
 = (1/3)(1 + e^(i(2rπ/3)) + e^(-i(2rπ/3)) )
 = (1/3)(1 + 2cos(2rπ/3))
 = 1  (rが3の倍数)
 = 0  (その他)
を利用しました。

 G(x) = Σ[r=0,n-1] g_r x^r なら
(1/3)(G(1) + G(ω) + G(ω~)) = Σ[3|r] g_r,

また
(1/4)(1^r + i^r + (-1)^r + (-i)^r) = (1/4)(1+(-1)^r)(1+i^r)
rが奇数のときは前の因子が0、r≡2 (mod 4) のときは後の因子が0
∴ rが4の倍数のときだけ1で、その他は0,
(1/4)(G(1)+G(i)+G(-1)+G(-i)) = Σ[4|r] g_r,
179132人目の素数さん
2021/07/03(土) 14:04:39.21ID:QGVp56H0
>>178
ありがとうございます
学びになりましたm(_ _)m
180132人目の素数さん
2021/07/03(土) 20:52:50.41ID:VMyVCAMG
『シコシコ』という擬音はどうでもよい。問題は、

自我    チンポ
↑      ↑   チンポ=自我
チンポ   自我

オブジェクト指向では、この三種類が考えられるということだ。
>チンポ=自我
散歩している時、自分もチンポも所在地は同一である。

高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚
高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚

夏目くんの場合は、チンポが自我を圧倒し、体が自然に滝川さんの股間に近づいていったのだ。

『笑ってごまかすな!!』

と言われても、夏目くんは何と言えば良かったのだろう?

    チンポ≫自我

『チンポが自我を超えてしまった』を簡略化して、チンポがシコシコする!

チンポがシコシコしていると(チンポが自我を超越していると)、息もハァハァになる。
チンポがシコシコしている(チンポが自我を超越している)と、顔もアヘ顔になる。
つまりその顔は『チンポの一部』つまりチンポの皮と同じということ。

博士号の肩書きがあっても、STAP細胞のそれは間違いであり科学者として失格。
チンポと自我の関係について、それが間違いということなら、俺も科学者を自称するのを止めよう。
しかしながらあの夏目くんは、笑ってごまかす以外に何と申し上げたら良かったのか。
181イナ ◆/7jUdUKiSM
2021/07/03(土) 21:25:24.05ID:28uMF+kN
>>176訂正。
>>163(2)
x(1-2y)=1/2より2x-4xy=1
y(1-2z)=1/2より2y-4yz=1
z(1-2x)=1/2より2z-4zx=1
辺々足すと2(x+y+z)-4(xy+yz+zx)=3
与式を辺々2倍すると2(x+y+z)+4(xy+yz+zx)=0
上式と下式を足すと4(x+y+z)=3
x+y+z=3/4
下式から上式を引くと8(xy+yz+zx)=-3
xy+yz+zx=-3/8
1/2x=1-2y,1/2y=1-2z,1/2z=1-2xを辺々掛けると、
1/8xyz=1-2(x+y+z)+4(xy+yz+zx)-8xyz
=1-2(3/4)+4(-3/8)-8xyz
=(1-1/2-3/2)-8xyz
=-2-8xyz
1=-16xyz-64x^2y^2z^2
64x^2y^2z^2+16xyz+1=0
(8xyz+1)^2=0
xyz=-1/8
解と係数の関係よりx,y,zはu^3-(3/4)u^2-(3/8)u+1/8=0の互いに異なる三つの解。
8u^3-6u^2-3u+1=0
(2u+1)(4u-1)(u-1)=0
u=-1/2,1/4,1
∴x,y,zは-1/2,1/4,1の互いに異なるいずれか。
182132人目の素数さん
2021/07/04(日) 08:08:58.10ID:N2VJ6Cbp
>>160
開業医スレでは入院勧告が出ている。
183132人目の素数さん
2021/07/04(日) 08:29:16.79ID:H9U91JJ2
まずはプロおじが入院しろや
184132人目の素数さん
2021/07/04(日) 08:45:03.56ID:Pdlqitqk
尿瓶入院するの?
185166
2021/07/04(日) 10:42:28.56ID:593V153A
>>181
それだと >>165 と同じ…
186132人目の素数さん
2021/07/04(日) 10:50:32.13ID:ZGJssiMb
>>182
隔離病棟に入院しなきゃいけないのはお前だよ、尿瓶ジジイ
187166
2021/07/04(日) 13:29:36.63ID:593V153A
>>181
 u = {-1/2, 1/4, 1}
 1-2u = {2, 1/2, -1}
掛けて 1/2 になる組合せをとる。
188132人目の素数さん
2021/07/05(月) 07:25:09.13ID:Lmgb/mSI
指数関数の分配法則について

r^(α+β) = r^α x r^β
 例. 3^4 = 3^2 x 3^2 = 9x9 = 81

この法則が使用できる(成立する) 条件の
「r が0より大きい実数である事」
という制約が直感に合致しないから奇妙に思える。

べき指数部である αやβは
{負の実数でも純粋虚数、複素数} なんでもOKなんだよな。
    例. e^(iπ) = -1 のように…。

一方で、基底部である r 、これが正の実数以外の数、
例えば {-100, 3i, ... }などだったりしたら破綻して使えないっていう…。

不思議!!
189132人目の素数さん
2021/07/05(月) 08:53:05.55ID:IeJ/rJyy
指数法則と指数関数がごっちゃになってる
190132人目の素数さん
2021/07/05(月) 10:13:21.70ID:KvEOkHQ2
r≠0 なら e^z = r の解 z=log(r) は無数に存在する。(ピカール)
z。± (2nπ)i  も解
とくに虚数部が (-π, π] に含まれるものを主値 Log(r) とする。
191132人目の素数さん
2021/07/05(月) 10:54:21.34ID:ChCWsVOC
要は、正実数いがいだと高直的になってさだまらないからやめとけってことですね
192132人目の素数さん
2021/07/05(月) 11:08:58.44ID:Lmgb/mSI
r = 0 の時、 α=+1 、β = -1 とすると…

0^(0) = 0^(+1-1) = 0^(1) x 0^(-1)
= 0 ÷0 ← おおっと!

r = 0 はいけそうに思えるが、
こういう落とし穴があるから惑わされるな!
隙あらばゼロ除算による論理破綻が隠れている。

r は…正の実数だけや…
0 も 負の実数も 虚数も 認められないんや…
193132人目の素数さん
2021/07/05(月) 11:47:45.12ID:IeJ/rJyy
認められないというか指数関数として考えてる時は底が負だと色々取り扱いが面倒な上に面白い話もないから底は1以外の正の実数と定めてるだけだと思う
194132人目の素数さん
2021/07/05(月) 12:00:03.06ID:KvEOkHQ2
>>180
要は、
T = (チンポ) - (インポ)
 = (インポでないチンポ)
 = (精力絶倫)
だからやめとけってことですね。
195132人目の素数さん
2021/07/05(月) 12:03:15.78ID:Lmgb/mSI
ちなみに分配法則だけじゃなく
結合法則? も成立しない。

(r^α)^β

r = i, α=4, β= 1/4 とすると…

i = i^(1)
  = {(i^4)^(1/4)} = {(-1x-1)^(1/4)}
  = 1^(1/4) = 1

i = 1 !!!?

分配も結合も、成立しねぇ。
成立するのは 底 r が正の実数の場合のみ…
{ 1, √2, e, ..} .など
196132人目の素数さん
2021/07/05(月) 12:05:15.13ID:Lmgb/mSI
これ、世界3大指数の問題の落とし穴な。
特に >>195 をやらかすなよ。
197132人目の素数さん
2021/07/05(月) 12:34:04.62ID:Lmgb/mSI
●複素数の豆知識
虚数という名前は実態を現していない事から
これは数学者からも不評であった。
特にあの ガウス は次のように
名付けるべきであったと述べている。

水平の数直線の1元であるので
・Positive Number 「正の(実)数」 → Direct Number (順元数)
・Negative Number 「負の(実)数」 → Direct Number (逆元数)

垂直の数直線の1元であるので
・Imaginary Number (虚数) → Lateral Number (側元数)
198132人目の素数さん
2021/07/05(月) 12:35:06.95ID:Lmgb/mSI
>>197
追記。
ワイもこれに同意である。
なぜなら、一般の自然科学と異なり (← ここ重要!)
数学とは全ての要素が観念上の物である。

観念上の空間で扱われる観念上の要素(数)
の取り扱いについて虚実を問う事、それ自体がナンセンスである。

例えば、
i という虚数が「自乗して -1 になる数だから存在しないんスよ」
と言うのであれば、
それと同じ理屈で 3の5乗根 も存在しないといえる。
なぜなら、 「無理数であり無限小数が続き、かつ、作図不能」であるのだから
この宇宙のどこに存在するというのか?
199132人目の素数さん
2021/07/05(月) 12:36:16.07ID:Lmgb/mSI
・訂正

負の数 は Inverse Number (逆元数)
200132人目の素数さん
2021/07/05(月) 14:10:15.79ID:a7mR8zoQ
lateral→imaginary→虚
どんどんダメになってくw
201132人目の素数さん
2021/07/05(月) 15:36:01.97ID:AD2iFvGc
次のような図を考える。

              http://www.creative-hive.com/creativehive/uploader/uploader.cgi?mode=downld&;no=4861

      円弧に対応する円は同一である必要はなく、端点ACで図のようになっていればいい。光線というのは図のようにBから出ている3本の線である。

   もし、領域、1,2,3に円が内接するならば、領域4にも円が内接することを示せ。
202132人目の素数さん
2021/07/05(月) 22:35:01.75ID:Y2bOgLzl
>>198
虚を突かれた気がした
203132人目の素数さん
2021/07/05(月) 23:09:53.91ID:iv7Vd7l/
実数tの3乗根をc(t)と書きます。

3次多項式f(x)は有理係数で、定数項が0。
f(1+c(2)) = 1-c(2)+c(4) のとき、f(1-c(2)) を求めよ。

という問題は
どう求めれば求めれますか
204132人目の素数さん
2021/07/06(火) 00:42:54.74ID:PCf5gHqp
どこまでやったんだ?
205132人目の素数さん
2021/07/06(火) 03:12:59.64ID:ixRp3s8E
aとbが互いに素のとき、a+bとabも互いに素になるのは証明なしで使っていいの?
206132人目の素数さん
2021/07/06(火) 03:20:01.03ID:+lb1HUGt
>>205
素因数が分離してるんだから
インジャネ?
207132人目の素数さん
2021/07/06(火) 03:22:03.61ID:ixRp3s8E
>>206
ありがとう!
208132人目の素数さん
2021/07/06(火) 03:26:04.38ID:+lb1HUGt
>>203
>3次多項式f(x)は有理係数で、定数項が0。
>f(1+c(2)) = 1-c(2)+c(4) のとき、f(1-c(2)) を求めよ。
f(x)=px^3+qx^2+rx
f(1+c(2))=p(1+c(2))^3+q(1+c(2))^2+r(1+c(2))
=p(3+3c(2)+3c(4))+q(1+2c(2)+c(4))+r(1+c(2))
=(3p+q+r)+(3p+3q+r)c(2)+(3p+q)c(4)
f(1-c(2))=(3p+q+r)-(3p+3q+r)c(2)+(3p+q)c(4)=1+c(2)+c(4)
209132人目の素数さん
2021/07/06(火) 03:29:04.80ID:+lb1HUGt
嘘だった
210132人目の素数さん
2021/07/06(火) 03:35:33.40ID:+lb1HUGt
f(1-c(2))=(-p+q+r)-(3p+3q+r)c(2)+(3p+q)c(4)=1+c(2)+c(4)-4p=-5+c(2)+c(4)
211132人目の素数さん
2021/07/06(火) 06:33:26.00ID:raldFPw3
とりあえず
188 >>195 >>197
ここでワイとガウスが述べた内容は
大学2年生あたりまでは役に立つから
ちゃんと頭に入れとけ。
212ガウ助 ◆SO2ml3R1BA
2021/07/06(火) 06:34:38.12ID:raldFPw3
てすと。
213132人目の素数さん
2021/07/06(火) 10:09:28.17ID:BR9AQPQE
嘘だった

f(1+c(2)) = (3p+q+r) + (3p+2q+r)c(2) + (3p+q)c(4)
 = 1 - c(2) + c(4)
 = 1.32748
{1, c(2), c(4)} はQ上一次独立だから
 3p + q + r = 1,
 3p + 2q + r = -1,
 3p + q = 1,
より
 p = 1, q = -2, r = 0,
 f(x) = xx(x-2),
f(1-c(2)) = (-p+q+r) - (3p+2q+r)c(2) + (3p+q)c(4)
 = -3 + c(2) + c(4)
 = -0.1526779
214132人目の素数さん
2021/07/06(火) 10:15:56.25ID:+lb1HUGt
usodattaa.....
215ガウ助 ◆SO2ml3R1BA
2021/07/06(火) 10:53:51.13ID:raldFPw3
うそつき!
216132人目の素数さん
2021/07/06(火) 13:50:56.49ID:L/CZNqPL
目の子で
f(x) = (x-1)^3-1 -(x-1) +(x-1)^2
がだせる。後は、
f(1-[3]√2)= -2-1 - (-[3]√2) + (-[3]√2)^2 = -3 +[3]√2 + [3]√4
を計算するだけ。

目の子で出せなくても、
f(x)=A(x-1)^3+B(x-1)^2+C(x-1)+A-B+C
等とおいてから、A,B,Cを求める方が、見通しが良い。
217132人目の素数さん
2021/07/06(火) 14:04:43.34ID:BZSeQ0EL
不定積分tanθ/1+tanθお願いします
218132人目の素数さん
2021/07/06(火) 16:21:40.80ID:gCNiR7RI
積分不可能
219132人目の素数さん
2021/07/06(火) 18:06:54.41ID:BZSeQ0EL
一応テキストに載っていた問題です。解答は-1/2log|cosx+sinx|+1/2xとのことです。解説はありませんでした。テキストの流れ的にはtanxで置換するのかなと思いましたがよく分かりません。
220132人目の素数さん
2021/07/06(火) 18:07:39.64ID:BZSeQ0EL
誤植の可能性もありますかね
221132人目の素数さん
2021/07/06(火) 19:02:49.89ID:xzVRk9QF
とりあえず>>1を読もう
222ガウ助 ◆SO2ml3R1BA
2021/07/06(火) 19:25:50.72ID:raldFPw3
教科書よめや
223132人目の素数さん
2021/07/06(火) 19:28:59.77ID:PCf5gHqp
>>217
明らかに数式の書き方を知らんな
224132人目の素数さん
2021/07/06(火) 20:24:09.04ID:+lb1HUGt
>>217
>tanθ/1+tanθ
sinθ/sinθ+cosθ
225132人目の素数さん
2021/07/06(火) 20:45:21.24ID:TtbyksOD
>>220
とりあえずまず答えを微分してみては?
226132人目の素数さん
2021/07/06(火) 21:10:21.93ID:AI8jdRda
tanθ=xの置換で解けたわ
227132人目の素数さん
2021/07/06(火) 21:34:21.76ID:TtbyksOD
求めるのを I として J = ∫ cos(x)/(sin(x) + cos(x)) dx を考えて I + J と J - I を考えるパターンやね
228132人目の素数さん
2021/07/06(火) 23:25:44.59ID:L/CZNqPL
>>217
答えを知っているからできる方法だが、
1 - 2 tanx/(1+tanx)
= 1 - 2 sinx/(cosx+sinx)
= (cosx-sinx)/(cosx+sinx)
= (sinx+cosx)'/(sinx+cosx)
を用いるのもある。
229132人目の素数さん
2021/07/07(水) 00:35:08.99ID:/n8kgWDC
>>228
これ、tanx=sinx/cosx を代入して変形していけばギリギリ辿り着きそうな雰囲気ある
230132人目の素数さん
2021/07/07(水) 01:54:49.73ID:LUCb5IlY
2/x=7/y=3/z キ 0が成り立つ時、 xyz/-x³+y³+4z³ の値を求めよ

という問題が全く分からないのでyoutubeで検索かけようと思ったのですが
なんて検索かけたらyoutube上で検索結果が出るか教えて下さい><
比で考える計算式と本のタイトルではあるのですが、そのまま検索しても全く関係ない動画が出てきます
231132人目の素数さん
2021/07/07(水) 02:55:38.09ID:0DoNaPzu
逆数をとって
 x/2 = y/7 = z/3 = k (≠0),

 xyz/(- x^3 + y^3 + 4z^3) = (2k)(7k)(3k)/{- (2k)^3 + (7k)^3 + 4(3k)^3}
  = 42k^3 / (- 8k^3 + 343k^3 + 108k^3)
  = 42k^3 / (443k^3)
  = 42/443,
232132人目の素数さん
2021/07/07(水) 03:18:44.66ID:PW8iUb0k
>>231
答え教えてくださってありがとうございます
ただこの問題自体全く理解して無くて (≠の記号も知らない…)
なので0からこれについての問題を勉強したいのですが
なんて検索すればいいのかすら分からなくて困ってます。

後、きさらぎひろしの優しい高校数学という本を買ったのですが内容難しくて
きついので頭あまり良くなくても読める高校の入門書教えていただけると嬉しいです
233132人目の素数さん
2021/07/07(水) 03:20:00.98ID:Flc9nP99
>>230
比例式で調べるといいよ
たいてい分母と分子が逆になってる
教科書にも逆数のパターンは載ってるんじゃないかな
234132人目の素数さん
2021/07/07(水) 07:29:35.44ID:ZsrS0IEB
くだらない自演するな尿瓶ジジイ
235132人目の素数さん
2021/07/07(水) 10:41:45.25ID:cNfJtqRR
>>232
比例式 解き方 高校
教科書読むといいよ
236132人目の素数さん
2021/07/07(水) 10:42:11.55ID:cNfJtqRR
比例式 解き方 高校 でググったら動画もある
237132人目の素数さん
2021/07/07(水) 14:11:25.65ID:AbFksM+j
>>234
自演認定厨=尿瓶洗浄係=職種の言えない医療従事者
シリツ卒らしい
238132人目の素数さん
2021/07/07(水) 14:14:31.15ID:tSspDJO8
>>237=尿瓶ジジイ=証拠は何もない自称医者笑
239132人目の素数さん
2021/07/07(水) 14:15:57.05ID:uGIqZkST
やっぱりここにも湧いてたのか
240132人目の素数さん
2021/07/07(水) 16:14:11.21ID:0DoNaPzu
>>232
きさらぎひろし「やさしい中学数学」〔改訂版〕学研プラス (2021)
  872p.2860円
http://gakken-mall.jp/ec/plus/pro/disp/1/1130526300

これを読破してから、そっち読んだら簡単と思うよ
図書館とかにあるんぢゃね?
241132人目の素数さん
2021/07/07(水) 16:27:46.96ID:0DoNaPzu
ついでに
http://www.kisaragi.school-info.jp/

(数I・A) 612p.1870円 2012年
http://gakken-mall.jp/ec/plus/pro/disp/1/1130353300

(数Ⅱ・B) 936p.2310円 2013年
http://gakken-mall.jp/ec/plus/pro/disp/1/1130385600

(数Ⅲ)  721p.2530円 2015年
http://gakken-mall.jp/ec/plus/pro/disp/1/1130385700
242132人目の素数さん
2021/07/08(木) 08:17:32.77ID:6J6OzqF+
>>237=尿瓶ジジイ=日本語通じてないガイジ笑
243132人目の素数さん
2021/07/09(金) 01:48:15.04ID:JkJondXU
a=√7+√3 / √7 - √3 , b= √7- √3 / √7 + √3 であるとき、次の式の値を求めよ。
(1)a²+b² (2)a³+b³ (3)a-b (4)b/a - a/b

答えを教えてほしいです
解き方が丸っきり分からないのですがググって自力で解こうにもなんて検索すれば良いかわかりません・・・
自力で解けるようになりたいです

書き込むスレ間違えたので失礼しました

きさらぎひろしの数学って本読んでるんですがわからない時、ページのタイトルでググっても類似問題や解説が出てこないのが凄く厄介なんですよね・・
244132人目の素数さん
2021/07/09(金) 02:07:44.53ID:vOALR3Vp
a+bとabを計算するだけじゃないのか
あとはa^2+b^2=(a+b)^2-2abみたいなかんじで
245132人目の素数さん
2021/07/09(金) 02:24:12.67ID:vOALR3Vp
a=√7+( √3 / √7 - √3 ), b= √7- ( √3 / √7 - √3 )とすれば
a+b=2√7
ab=(√7)^2 - ( √3 / √7 - √3 )^2
となる
246132人目の素数さん
2021/07/09(金) 02:44:24.48ID:nnlKI2Lr
aは2√21になったんですけどこれを2乗してbも同じことして足せばいいだけですか?
√7+( √3 / √7 - √3 )これは初めて見たのでよくわかりません…
247132人目の素数さん
2021/07/09(金) 02:59:31.42ID:DsANACIZ
国公立入試ならaとbを個別に求めて代入するのも悪くない

形がややこしいので>>245さんがやってるようにまずは有理化する

次に
(2)a^3+b^3=(a+b)^3-3ab(a+b)を使う
(a+b)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab(a+b)+b^3を移項して導いてね

(3)はaとbを求めているなら代入するのもいい
たいてい(a-b)^2の値を求めて「ルートつけて」a-b=±○となるけど○が正なので○となりがち

(4)は通分して代入
248132人目の素数さん
2021/07/09(金) 03:00:02.88ID:vOALR3Vp
もしかしてa=(√7+√3) / (√7 - √3) , b= (√7- √3) / (√7 + √3) なのか
それだとa+b=((√7+√3)^2+(√7- √3)^2)/(7 - 3)
ab=1になる
249132人目の素数さん
2021/07/09(金) 15:10:24.67ID:JOXJl2Ba
分母を有理化すると
 a = (√7 + √3)^2 /(7-3) = (5+√21)/2,
 b = (√7 - √3)^2 /(7-3) = (5-√21)/2,
これより
 a + b = 5,
 a - b = √21,
これと ab=1 を利用する
250132人目の素数さん
2021/07/09(金) 16:08:48.59ID:yIRCBgIG
まだ満タン尿瓶飲み干し爺が居るのか
251132人目の素数さん
2021/07/09(金) 16:17:40.63ID:se1d2kOD
尿瓶プロおじまだ生きてたのか
252132人目の素数さん
2021/07/09(金) 19:32:23.84ID:vOALR3Vp
>>249
この問題のキモはa、bを有利化しなくともa+b、abを求めることで計算ができることだと思う
253132人目の素数さん
2021/07/10(土) 19:32:55.39ID:94h3VjpO
関数と導関数が等しくなる関数としては
eを底にもつ指数関数が代表的である。

・f(t) = e^t
導関数は d f(t)/dt = ln(e) e^t = 1*e^t = e^t

しかし、私はもう1つ見つけた。

・ f(t) = 0*t + 0 = 0
d f(t)/dt = 0

ただの水平な横線 であるが 実数t がどのような時も
関数と導関数の値が等しくなる!!
254132人目の素数さん
2021/07/10(土) 19:33:03.82ID:g1VV1lDA
それはキモいな・・・
255132人目の素数さん
2021/07/10(土) 20:31:44.19ID:18Hv97lD
微分方程式 (d/dx)f(x)=f(x) の解は f(x)=C*e^x である
ここでCは任意の定数である
もちろんC=0でもよい
256132人目の素数さん
2021/07/10(土) 20:36:25.26ID:++CIOCdR
証明して
257132人目の素数さん
2021/07/10(土) 20:44:40.91ID:HISN56tB
(d/dx)((e^x)*f(x))=0
イカ略
258132人目の素数さん
2021/07/10(土) 21:04:36.34ID:++CIOCdR
でたらめはきらいだわ
259132人目の素数さん
2021/07/10(土) 21:20:06.12ID:aW6HilK+
>>253
まだまだあるよ!頑張って!!
260132人目の素数さん
2021/07/11(日) 00:43:41.27ID:vgGn6oDe
実数x,yがx^2+y^2=1を満たしながら変わるとき
x^2+xyの最大値を求めよ。

という問題はsin cosとおかないと解けませんか?
261132人目の素数さん
2021/07/11(日) 01:07:36.74ID:jbxH7+ug
ラグランジェ乗数法を使えば良い
262132人目の素数さん
2021/07/11(日) 01:50:33.83ID:drg0rdAF
x^2 + xy = {(1+√2)/2}(x^2+y^2) - {(√2 -1)/2}{x - (1+√2)y}^2
    ≦ (1+√2)/2,
を使えば良い。
263132人目の素数さん
2021/07/11(日) 03:15:24.96ID:JzaoqJH8
こんなんでもいけた
x^2+y^2=1より
x^2 + xy = (x^2+xy)/(x^2+y^2)
= (1+y/x)/{1+(y/x)^2}
= (1+t)/{1+t^2} (t=y/xとおいた)
(=f(t))
(d/dt)f(t)計算して極大値(1+√2)/2
264132人目の素数さん
2021/07/11(日) 03:27:03.82ID:SDCOGPgv
   ラーグランジュの未定乗数法とか大学教養で習う 強力な定理としてエレガントな人は知るにとどめているし

     一般に不等式などの問題を解くときにはもっとエッレガントな解き方があるんでラグランジュを使うとかクソだし

  初等幾何の問題を ユークリッドで解かずに、 ライプニッツで解いたところで、意味がないのと同じだろう
265132人目の素数さん
2021/07/11(日) 03:30:07.63ID:c+ik7xV9
https://www.instagram.com/p/B7u2b5Yn-0S/c/17858541850729295/
266132人目の素数さん
2021/07/11(日) 05:12:07.98ID:bgM5VqHZ
>>255
おまえ賢いな、
おれと一緒にめざすか?
267132人目の素数さん
2021/07/11(日) 05:15:08.70ID:bgM5VqHZ
f_a(t) = 0^t
f_b(t) = (0.5)^t
f_c(t) = 1^t
f_d(t) = 2^t
f_e(t) = e^t

をそれぞれ図示(ずし)せよ!出来るものならな。
268132人目の素数さん
2021/07/11(日) 05:16:46.25ID:bgM5VqHZ
>>264
結論に至る過程にこそ価値があるのであって
結論そのものは重要ではない。
ってジョルノがいってた
269132人目の素数さん
2021/07/11(日) 05:28:14.48ID:drg0rdAF
>>150
「Tobacco-ya の娘」

@YouTube

03:34

@YouTube

03:56,

* 平井英子(1918~2021) 童謡歌手、流行歌手。
270132人目の素数さん
2021/07/11(日) 08:10:26.67ID:vgGn6oDe
>>262
どうやってこんな変形思いつくですか?
271132人目の素数さん
2021/07/11(日) 09:47:42.00ID:drg0rdAF
答えを知ってるからできる。
まず答えを手に入れてから。
272132人目の素数さん
2021/07/11(日) 09:49:32.53ID:TBms95QV
引き出しの中が豊富って事はそれだけ勉強してるって事
273132人目の素数さん
2021/07/11(日) 10:02:35.70ID:drg0rdAF
>>263
 ((1+√2)/2)(1+t^2) - (1+t) = ((1+√2)/2)(t+1-√2)^2 ≧ 0,
 これは t=tanθ とおいたのと変わらないが…
274132人目の素数さん
2021/07/11(日) 10:26:07.42ID:bgM5VqHZ
引き出しを明けたら
猫型ロボットが出てきた。

あまりにびっくりしたので
僕は反射的に強く閉めてしまった。
すると、そいつは引き出しにひっかかったまま
動かなくなってしまった。

            新約ドラえもん 完
275132人目の素数さん
2021/07/11(日) 10:37:20.01ID:drg0rdAF
>>272
ディリクレの引き出し論法と云って
試験の成績が芳しくなかった学生が使う。
276132人目の素数さん
2021/07/11(日) 11:13:56.82ID:z7s1MiF2
尿瓶の三文芝居w
277132人目の素数さん
2021/07/11(日) 11:28:05.36ID:jbxH7+ug
ラーグランジュの未定乗数法に恨みのある落ちこぼれとか笑える
278132人目の素数さん
2021/07/11(日) 11:57:29.69ID:SDCOGPgv
  数学の中で一番難しいのは  エウクレイデスで解く初等幾何学。

   ユークリッドによる初等幾何学の難しさはハンパない。
279132人目の素数さん
2021/07/11(日) 12:36:12.39ID:TBms95QV
>>278
絶対?何を担保に主張する?全財産?
280132人目の素数さん
2021/07/11(日) 13:00:38.87ID:lun+0Ked
ラーグランジュで笑ってしまった
281132人目の素数さん
2021/07/11(日) 14:29:25.53ID:1Wa3vtE/
尿瓶ジジイ=尿瓶洗浄係=職種の言えない医療従事者
開業医スレを荒らしに行って入院勧告を受けているのが尿瓶洗浄係。
内視鏡スレを荒らし行ったが業界ネタを全く投稿できないのが尿瓶洗浄係。
282132人目の素数さん
2021/07/11(日) 14:41:42.79ID:ddA0rig6
>>281=尿瓶=自称(証拠は出せない、逃げる)医者w
283132人目の素数さん
2021/07/11(日) 14:52:36.43ID:bgM5VqHZ
指数関数 f = e^t について考える。

左から右へ大きく数直線を1本描いて用意する。
数直線上を動く点p がある、
pは 時刻t の時, 座標は f(t) である。

問い.1
f(t) = e^t とする。
時刻t = 0, t=1,t=π の
3つの場合について、
その時のpの座標とその時点での速度ベクトルを矢印で図に描け。

問い.2
f(t) = e^(3t) として、問い.1 をとけ。

問い.3
ここで 複素平面 を1枚用意する。
f(t) = e^(it) として、問い.1 をとけ。
284132人目の素数さん
2021/07/11(日) 15:18:28.49ID:hrOjxa3Y
>>181
イナさんは50歳ですか?
285132人目の素数さん
2021/07/11(日) 15:34:07.92ID:SDCOGPgv
     エウクレイドス(ユークリッド)の整備した公理は2000年にわたり初等幾何の解法を整備し、21世紀になってもなお新しい問題が出ており驚愕する。
   もちろん自分でも問題を解こうとしてみたが、その分野としての難しさからどうにもならなかった。今でも問題を見ることはあるがあの種の図形は苦手で
    一つも分からない。
286132人目の素数さん
2021/07/11(日) 15:37:06.31ID:ORjTzp6D
>>285=空白ガイジも>>281=尿瓶もこのスレに不要だからさっさと消えろ
287132人目の素数さん
2021/07/11(日) 15:38:34.87ID:SDCOGPgv
>>286

  でもお前、初等幾何のクソ難しい問題出されると全然解けないじゃん
288132人目の素数さん
2021/07/11(日) 15:48:17.63ID:SDCOGPgv
    素朴整数論の分野では、フェルマー予想が、 驚異的な難問として存在した。では、ユークリッド幾何の分野において、同じような問題は存在するか?

  つまり、図形の定理だけが示され、証明には大量の時間を費やすことになるもの
289132人目の素数さん
2021/07/11(日) 16:36:20.18ID:bgM5VqHZ
>>283 の解説
最後の問題

f = e^(it)
導関数 f ' = i e^(it)
驚くべき点は微分した時に
虚数i が係数として出てきてしまうこと。
f そのものを i 倍するという珍妙な係数。

そのため、様々なtにおいて
点をプロットして速度のベクトルを描いてみると
(虚数軸の上下への方向が混ざるから)
渦巻のようなベクトルの矢印が得られる。

天気図でいう台風の低気圧・左巻きの矢印みたいなベクトルが
何本もあるのを想像してほしい。
290132人目の素数さん
2021/07/11(日) 16:43:33.17ID:bgM5VqHZ
これが e^(it) のキモなんだよね!

複素平面という画用紙で、
速度のベクトルの矢印を頭に思い浮かべるかどうか!
これがイメージ図で覚えられない人は理系に向いていないね。

これを分かりやすくした定理というか公式が
あの有名な
e^(iπ) +1 = 0
という式になる。

ちなみに、
e^t は e を t回だけ乗算した e x e x e x ... (t個) と
表現できるし、それに意味があるのも理解できる。
いっぽう、
e^(it) は e を (it) 回だけ乗算した e x ex e x .. (it個?) という
表現は出来るけど普通はしない。
なぜなら、それに意味がなくナンセンスだから。
そこに意味がないから誰もわざわざ変換しない。
291132人目の素数さん
2021/07/11(日) 16:46:17.68ID:ORjTzp6D
>>287
その前に空白ガイジ日本語の書き方すら分からないじゃんww
292132人目の素数さん
2021/07/11(日) 17:06:07.90ID:ORjTzp6D
954 卵の名無しさん[sage] 2021/07/01(木) 17:02:49.72 ID:JiSGmJgD
オリンパスのメディカルタウンのオンデマンド配信は1年位は残しておいたほしいなぁ。

>残しておいたほしいなぁ。

>残しておいたほしいなぁ。

>残しておいたほしいなぁ。

>残しておいたほしいなぁ。

尿瓶も空白ガイジも日本語不自由にも程があるだろww
293132人目の素数さん
2021/07/11(日) 20:33:57.52ID:nfB6AG5X
>>281=尿瓶=証拠の出せない自称医者笑=医者板にも数学板にも居場所がないゴミ笑
294132人目の素数さん
2021/07/11(日) 20:50:52.37ID:1Wa3vtE/
>>275
俺の習った頃には部屋割り論法という呼び方だったなぁ。
鳩ノ巣原理というのは狭いところに無理やり押し込む動物虐待と言われかねないと思う。
295132人目の素数さん
2021/07/11(日) 20:53:40.64ID:1Wa3vtE/
>>293
内視鏡スレに業界ネタを書くと普通にレスがつくぞ。
俺が批判的に紹介した本が面白そうと買った医師からの投稿もあった。
俺が批判した部分に共鳴する医師もいて我が意を得たりという感じだったなぁ。
わざわざ内視鏡スレにまで出張してtypoのアラ探しをしている尿瓶洗浄係ってネジが外れていると思う。
開業医スレでは入院勧告が出されていたのも納得できる。
296132人目の素数さん
2021/07/11(日) 20:56:46.38ID:nfB6AG5X
>>295=尿瓶ほど分かりやすい自演ないよね
わざわざレスありがとうございますとかw
297132人目の素数さん
2021/07/11(日) 20:58:47.51ID:nfB6AG5X
typo多すぎなんだよ、認知症なのか日本語不自由なのか知らんけど
数学語る以前の問題笑
298132人目の素数さん
2021/07/11(日) 21:13:54.43ID:O2WLB2AF
こいつ尿瓶と内視鏡好きすぎるだろ
299132人目の素数さん
2021/07/11(日) 21:16:16.60ID:O2WLB2AF
あと人のタイポはバカにしてたのに、自分のタイポには甘すぎるだろ
300132人目の素数さん
2021/07/11(日) 21:30:43.89ID:drg0rdAF
(例)
そんな香具師はタイポしてほしい…
301132人目の素数さん
2021/07/11(日) 22:00:37.85ID:nfB6AG5X
香具師とか( ・∀・)イイ!!とか加齢臭で鼻が曲がりそう
今令和だぞ?わかる?21世紀、西暦2021年なの
現実だけでなくネットの世界ですら浦島太郎なんだね尿瓶は笑
302132人目の素数さん
2021/07/11(日) 22:55:03.96ID:bgM5VqHZ
>>289 >>290
なんだろう…レスがないな…

みんなワイをNGしてるん?
303132人目の素数さん
2021/07/12(月) 00:14:22.42ID:qzXBMN5U
>>298
内視鏡は仕事で扱うけど
尿瓶を扱うのは罵倒厨。
今日は2件PCR検査をやったがどっちも陰性だった。
まあ、専用容器に滴下してアナライザーに入れるだけ。
罵倒厨の専用容器は尿瓶!!
304132人目の素数さん
2021/07/12(月) 00:15:19.59ID:qzXBMN5U
内視鏡スレ立てしたら顔文字のレスがついたなぁ。
305132人目の素数さん
2021/07/12(月) 00:39:18.86ID:kN+qzK8/
>>303
でも君尿瓶と内視鏡大好きだよね?
その話しかしないじゃん
306132人目の素数さん
2021/07/12(月) 02:29:24.59ID:4SqHoWuk
>>294

現在の日本において学生に集中的に数学を勉強させる唯一の機会となる大学受験特に、東大や京大、早慶などのハイレベル大学においても
    平面幾何はおろか、鳩ノ巣原理など、数オリレベルの定理を知らないと解けないような出題はない
   ましてや入学後に数学を勉強する奇特な人間はいないし、特に数学に興味がある人が受ける数検1,2級でも出ない
     学生が若いころに集中して数学を勉強するチャンスがあるときに勉強するように仕向けていないのだから、そんなものを知っている必要はないということだ
   逆に言えば、そういうのを知れというのなら、現実的に学生が勉強するときに問題を出せ

     
307132人目の素数さん
2021/07/12(月) 02:30:52.57ID:qBXH3NpZ
数学板でとんちんかんなアピールされてもなぁw
だから>>304は尿瓶なんだよ
308132人目の素数さん
2021/07/12(月) 03:02:37.10ID:y7+yZJd0
鳩ノ巣原理なんてフォーカスゴールドにも載ってるぞ
入試にもたまに出るから他のレベル高めな高校生向け参考書や問題集でもたまにみる
309132人目の素数さん
2021/07/12(月) 05:06:27.20ID:qzXBMN5U
>>307
内視鏡スレでのタイプミスを数学板のスレに掲げて悦にいるのが尿瓶洗浄係。
310132人目の素数さん
2021/07/12(月) 06:53:23.03ID:ohKE2D6C
臨床医ならこういう計算をする(高校数学の範囲外であるが、臨床上必要)

当院では新入院患者には新型コロナウイルス抗原検査をすることになっている。
昨日、3人に抗原検査を行って全員陰性であったので一般病棟に入院となった。
抗原検査はPCR検査と比べて感度が低いことが知られている。
 > 多くの抗原検査の感度は50%~90%の範囲に留まります。
  https://www.aireikai.jp/news/detail.php?seq=178
ということなので
抗原検査の感度の平均値を70%、95%信頼区間を50~90%とする。
3人のなかに新型コロナウイルス感染者が1人以上いる確率の中央値と95%信頼区間を求めよ。
311132人目の素数さん
2021/07/12(月) 07:09:00.29ID:kN+qzK8/
尿瓶向け臨床問題

尿瓶に「あなたは尿瓶洗浄係ですか」という質問を五回する。ただし、
尿瓶は、「はい」か「いいえ」と答える前にさいころを振り
1 または2の目が出たときは正直に答え、3または4の目が出たときは うその答えを言い、
5または6の目が出たときは1/2の確率で正直に答えるものとする。

(1) 尿瓶が尿瓶洗浄係のとき、「はい」と答える回数が3である確率を求めよ。

(2) 「はい」と答える回数が3であるとき、尿瓶が尿瓶洗浄係である確率を求めよ。
312132人目の素数さん
2021/07/12(月) 07:28:55.77ID:y7+yZJd0
期待値やら信頼区間は数学Bの確率統計でやるよ
今はほぼ選択されないけど新課程の数学Bでは必修になる
ベクトルが新設される数学Cいき
313132人目の素数さん
2021/07/12(月) 08:24:33.58ID:TX+2KMGd
>>309
数学板でも沢山あるぞ?全部あげてやろうか尿瓶()
314132人目の素数さん
2021/07/12(月) 08:40:29.65ID:qzXBMN5U
>>312
感度の分布にβ分布を想定したけど
高校数学なら正規分布近似かな?
315132人目の素数さん
2021/07/12(月) 08:41:10.57ID:qzXBMN5U
>>313
尿瓶洗浄はあんたの仕事だろ。
316132人目の素数さん
2021/07/12(月) 08:48:24.07ID:8Db8sC6C
尿瓶向け臨床問題

尿瓶に「あなたは尿瓶洗浄係ですか」という質問を五回する。ただし、
尿瓶は、「はい」か「いいえ」と答える前にさいころを振り
1 または2の目が出たときは正直に答え、3または4の目が出たときは うその答えを言い、
5または6の目が出たときは1/2の確率で正直に答えるものとする。

(1) 尿瓶が尿瓶洗浄係のとき、「はい」と答える回数が3である確率を求めよ。

(2) 「はい」と答える回数が3であるとき、尿瓶が尿瓶洗浄係である確率を求めよ。
317132人目の素数さん
2021/07/12(月) 09:24:45.70ID:0mvBs6LX
尿瓶は仕事なんかない穀潰しだからこんなところしか来るところがないんだろうなw
318132人目の素数さん
2021/07/12(月) 09:26:59.52ID:5bLOquNk
おい尿瓶ジジイ
いつになったら医師免許と卒業証書出すんだよ
319132人目の素数さん
2021/07/12(月) 19:11:41.58ID:WF8grPc+
シビニアン・コントロール だな。
320132人目の素数さん
2021/07/13(火) 03:33:11.10ID:XxCmUySI
それ面白いと思ってる?
321132人目の素数さん
2021/07/13(火) 06:59:53.32ID:XIoitBxg
このスレの皆様は医者なんかなりたくなかったんだよ。
322132人目の素数さん
2021/07/13(火) 20:19:56.95ID:w61FTnjw
「シビニャン」ていうシビン形ネコのゆるキャラ作らない?
323132人目の素数さん
2021/07/13(火) 21:41:35.01ID:z2dcdBER
y=Ax+Bーsqrt(Cx+D) の形の関数は
だいたい放物線を表すですか?
324132人目の素数さん
2021/07/13(火) 23:30:56.50ID:sYoMx5B1
>>323
(Ax+B-y)^2=Cx+D
放物線ですね
325132人目の素数さん
2021/07/14(水) 01:22:55.55ID:Z4bBokyX
 x + (D/C) = X,
 y - B + (AD/C) = Y,
(平行移動)とおくと
 (AX-Y)^2 = CX,
次に
 (AX-Y)/√(AA+1) = U,
 (AY+X)/√(AA+1) = V,
(回転) とおくと
 X = (V+AU)/√(AA+1),
 V = -AU + (1/C)(AA+1)^(3/2)・U^2   … 放物線
326132人目の素数さん
2021/07/14(水) 01:32:14.43ID:Z4bBokyX
>>322
http://minkara.carview.co.jp/userid/1582318/car/1174648/4726837/1/photo.aspx
327132人目の素数さん
2021/07/14(水) 14:01:34.67ID:Z4bBokyX
>>300
巨人とタイポーはスポーツがらみだけど、目玉焼きはなんでかな?

(昭和の戦後期、子どもに人気のあったもの)
328132人目の素数さん
2021/07/14(水) 14:49:01.98ID:XLoj6kiU
正方形は平面上の格子点で実現できます。
性三角形は、平面上の格子点では実現できませんが3次元の格子点なら実現可能です。
より高次元の格子点を考えると、他の性多角形も実現できるのでしょうか。
329132人目の素数さん
2021/07/14(水) 22:14:20.75ID:CItJbiQh
>>328
(10000)~(00001) 正五角形
330132人目の素数さん
2021/07/14(水) 22:30:27.40ID:uZmt2bLD
なるほどねー
n次元の各軸単位ベクトル e1~en を位置ベクトルとすると
x1+…+xn = 1 の平面に乗ってるわけだ
331132人目の素数さん
2021/07/14(水) 23:49:18.89ID:Z4bBokyX
(1,0,-1) (1,-1,0) (0,-1,1) (-1,0,1) (-1,1,0) (0,1,-1)
正六角形
332132人目の素数さん
2021/07/15(木) 00:41:50.94ID:L97eb+Ev
>>330
n=5のとき、一辺の長さが√2の五胞体の頂点になる気がするんだ
333330
2021/07/15(木) 01:22:14.07ID:iQJcac45
おっと x1+…+xn = 1 は平面じゃなく n-1 次元図形だったか
334132人目の素数さん
2021/07/15(木) 01:31:10.48ID:P/6XRe7T
   不等式で   a≧a という公理があるらしいですが、なんで >を含める必要があるんですか? a>aは成立しないから

    a=aでいいのでは
335132人目の素数さん
2021/07/15(木) 01:32:50.31ID:iQJcac45
>>331 を参考にすると正五角形も予想がつくな
336132人目の素数さん
2021/07/15(木) 03:17:43.31ID:9YCAYvao
>>334
ここで言う公理とは =, >, ≧ の働きを規定するものだと思いますが,
このうちどれか二つの記号について公理を設定すれば残りの一つの働きを他の公理から決めることが出来ます(*)
あなたは =, > の公理を定めれば ≧ の公理は不要だと言っていて,
あなたが見た書籍などでは =, ≧ の公理を定めているのでしょう

(*)
x ≧ y := x = y または x > y
x > y := not(x = y) かつ x ≧ y
x = y := x ≧ y かつ y ≧ x
337132人目の素数さん
2021/07/15(木) 06:14:37.24ID:TzPF1VDl
(9-x^2)^(1/x)の微分ってどうやればいいんでしょうか?
338132人目の素数さん
2021/07/15(木) 06:33:18.52ID:BgsbXow+
>>337
対数微分法
https://manabitimes.jp/math/923
339132人目の素数さん
2021/07/15(木) 06:59:14.19ID:H+25e5UF
>>337,338
f(x)^g(x)=e^g(x)logf(x)
340132人目の素数さん
2021/07/15(木) 07:51:35.22ID:TzPF1VDl
>>338
ありがとうございます!
341132人目の素数さん
2021/07/15(木) 07:54:38.53ID:TzPF1VDl
(9-x^2)^(1/x)の積分をどなたか教えてもらないでしょうか
342132人目の素数さん
2021/07/15(木) 09:00:52.97ID:/eeD+Zw2
wolfram先生は知らないって
343132人目の素数さん
2021/07/15(木) 09:05:30.89ID:hKP9ipSq
だれ?
344イナ ◆/7jUdUKiSM
2021/07/15(木) 12:45:19.99ID:e9F5IT69
>>181
>>260
x^2+xy=kとおくと、
x^2+y^2=1よりy=±√(1-x^2)だから、
x^2±x√(1-x^2)-k=0
(x^2-k)^2=x^2(1-x^2)
x^4-2kx^2+k^2=x^2-x^4
2x^4-(2k+1)x^2+k^2=0
判別式D=4k^2+4k+1-8k^2≧0
4k^2-4k-1≦0
(2-√8)/4≦k≦(2+√8)/4
(1-√2)/2≦k≦(1+√2)/2
∴最小値(1-√2)/2
345イナ ◆/7jUdUKiSM
2021/07/15(木) 12:48:04.59ID:e9F5IT69
>>344訂正。
>>260
x^2+xy=kとおくと、
x^2+y^2=1よりy=±√(1-x^2)だから、
x^2±x√(1-x^2)-k=0
(x^2-k)^2=x^2(1-x^2)
x^4-2kx^2+k^2=x^2-x^4
2x^4-(2k+1)x^2+k^2=0
判別式D=4k^2+4k+1-8k^2≧0
4k^2-4k-1≦0
(2-√8)/4≦k≦(2+√8)/4
(1-√2)/2≦k≦(1+√2)/2
∴最大値(1+√2)/2
346132人目の素数さん
2021/07/15(木) 19:02:32.37ID:xBU1Qk3T
こんな貪臭い解答ならcos sinとおく方がましやな
347132人目の素数さん
2021/07/15(木) 19:30:29.00ID:hKP9ipSq
(√2 sin(2©+π/4) + 1)/2
348132人目の素数さん
2021/07/15(木) 19:35:55.89ID:EZj8xhr0
test
349132人目の素数さん
2021/07/15(木) 20:18:45.69ID:VzyjlegM
>>341
通常関数ではできないんですよ
微分ガロア理論を学んで下さい
350132人目の素数さん
2021/07/15(木) 21:08:51.02ID:s5HgnWIH
奇数の平方数から原始ピタゴラス数を得る方法はきわめて簡単ですが、
この方法で導かれる3つの数がピタゴラス数の要件を満たすことはどのようにして証明すれば良いですか?(平方数の和でなく、いずれかの数が3の倍数とかそういう方法で)
351132人目の素数さん
2021/07/15(木) 21:28:09.43ID:s5HgnWIH
>>350
奇数の平方数が、原始ピタゴラス数となる組を何個持つかは、どのようにして決まりますか?

3 4 5 5 12 13
7 24 25
9 40 41
11 60 61
13 84 85

21 40 41 20 21 29
わかりそうでわからないです。
352132人目の素数さん
2021/07/15(木) 21:28:47.50ID:RPQYyX+P
その方法とは?
353132人目の素数さん
2021/07/15(木) 21:48:19.91ID:s5HgnWIH
>>352
奇数の平方数を式変形すると

(2a+1)^2=4a^2+4a+1
2(2a^2+2a)+1

連続した整数の和となるため、、
(2a^2+2a)^2=4a^4+4a^2+8a^3
(2a^2+2a+1)^2=4a^4+4a^2+1..


突き詰めて言えば、

(2a+1,2a^2+2a,2a^2+2a+1)は原始ピタゴラス数となる
354132人目の素数さん
2021/07/15(木) 21:53:04.31ID:RPQYyX+P
なんで「x^2+y^2=z^2を満たす」ではダメなの?
355132人目の素数さん
2021/07/15(木) 21:53:45.91ID:s5HgnWIH
>>353
aが矩形数の2倍で表せるとき、原始ピタゴラス数となる組は2つあるということでもあるわけで。
356132人目の素数さん
2021/07/15(木) 21:55:30.45ID:s5HgnWIH
>>354
それ以外の方法を用いて証明する手段を求めているからです。
357132人目の素数さん
2021/07/15(木) 22:36:42.41ID:RPQYyX+P
どんな方法でも最終的には「x^2+y^2=z^2を満たす」を示さないと証明にならないように思うんだが
358132人目の素数さん
2021/07/15(木) 23:20:49.82ID:L97eb+Ev
>>328
性多角形とはなんぞ?
359132人目の素数さん
2021/07/16(金) 00:26:45.78ID:N3mjMsDH
点L, G, B, T, I, Q を結んでできる多角形
360132人目の素数さん
2021/07/16(金) 13:38:46.38ID:C6mfn2Nh
連続関数f(x)は、x≠0のときはf(x)=sin(x)/(e^x-1) と表される。
(1) f(0)を求めよ。
(2) f(x)はx=0で微分可能であること示し、f'(0)を求めよ。

(1)
から難しくてわからないです。
361132人目の素数さん
2021/07/16(金) 14:00:39.87ID:xjPP89jX
lim sin(x)/(e^x-1)
= lim (sin(x)/x)/((e^x-1)/x)
= (lim sin(x)/x)/(lim (e^x-1)/x)
最後の2つの極限は習ったよね?
362132人目の素数さん
2021/07/16(金) 14:02:13.88ID:xjPP89jX
fは連続関数だからf(0)は上記の極限に等しい
363132人目の素数さん
2021/07/16(金) 14:20:59.88ID:Loj94Ktx
むず
364132人目の素数さん
2021/07/16(金) 15:58:52.18ID:Aibo74kC
ゴミみたいな問題やな
365132人目の素数さん
2021/07/16(金) 16:03:45.07ID:yUqvUxNy
(2)ってテーラー近似、ロピタル以外の手ある?
366132人目の素数さん
2021/07/16(金) 20:27:12.23ID:wBQcDNXp
n番目の三角数が9の倍数であるとき、n+1番目,n-1番目の三角数のどちらかが必ず9の倍数となることを証明せよ。
367132人目の素数さん
2021/07/16(金) 20:27:36.66ID:mmmk7CWg
>>337
(f(x)^g(x))' = g(x) f(x)^(g(x)-1) f'(x) + f(x)^g(x) g'(x) ln f(x)
最初の項は (f(x)^a)' タイプ、あとの項は (a^f(x))' タイプ。
あとは >>338>>339
368132人目の素数さん
2021/07/16(金) 20:35:50.96ID:mmmk7CWg
>>366
mod 9 で
-4×(-3) ≡ 3
-3×(-2) ≡ 6
-2×(-1) ≡ 2
-1×0 ≡ 0
0×1 ≡ 0
1×2 ≡ 2
2×3 ≡ 6
3×4 ≡ 3
4×5 ≡ 2
369132人目の素数さん
2021/07/16(金) 20:39:58.76ID:wBQcDNXp
三角数に9で割って1余る数があるということですが、
三角数に9を掛けて1を足した数が必ず三角数になる、という証明は可能ですか?
8を掛けて1を足すと奇数の平方数になる、というのは知っていますが。

、、、ということは、奇数の平方数には、三角数を足すと別の三角数になる値が存在するということになります。
370132人目の素数さん
2021/07/16(金) 21:00:11.61ID:wBQcDNXp
>>368
良くわからないけれども、余りが2となる三角数は9で割って1余るんだろうな、ということは
周期性から察します。ただ、余りが1にならないのは不思議なところです。3や6は理解出来ますが。
371132人目の素数さん
2021/07/16(金) 21:05:42.67ID:ldAQetIh
>>367
>最初の項は (f(x)^a)' タイプ、あとの項は (a^f(x))' タイプ。
偏微分の合成関数の微分か!
372132人目の素数さん
2021/07/16(金) 21:35:26.64ID:QOGbMU7A
n(n+1)/2=(nn+n)/2 三角数に
9(nn+n)/2=(9nn+9n)/2 9を掛けて
(9nn+9n)/2+1=(9nn+9n+2)/2 1を足したら
=(3n+1)(3n+2)/2 三角数

さんくすー
373132人目の素数さん
2021/07/17(土) 03:43:26.49ID:Js3VOks3
 n(n+1)/2 ≡ 0  (mod 9)
とする。
n, n+1 の両方が3の倍数とはならないから
いずれか一方だけが9の倍数。
n≡0 (mod 9) なら (n-1)n/2 ≡ 0 (mod 9)
n+1≡0 (mod 9) なら (n+1)(n+2)/2 ≡ 0 (mod 9)
374132人目の素数さん
2021/07/17(土) 04:10:11.44ID:Js3VOks3
n ≡ 0, 8 ⇔ n(n+1)/2 ≡ 0 (mod 9)
n ≡ 1~7 ⇔ n(n+1)/2 ≠ 0 (mod 9)
375132人目の素数さん
2021/07/17(土) 12:01:32.80ID:SXi2xZo8
頑張れ
376イナ ◆/7jUdUKiSM
2021/07/17(土) 21:52:46.28ID:M68oykY/
>>345
問題見失ったんで答えのみ。
y=xとy=7xのなす角の二等分線をy=axとおくと、
y=7xとx軸がなす角θについてcosθ=1/√50, sinθ=7/√50
cos{(θ+45°)/2}=1/(a^2+1)=√[{1+cos(θ+45°)}/2]
1/(a^2+1)={1+cos(θ+45°)}/2
={1+cosθ(√2/2)-sin(√2/2)}/2
2/(a^2+1)=1+(cosθ-sinθ)(√2/2)
4/(a^2+1)=2+(cosθ- sinθ)√2
=2-(6/√50)√2
=4/5
a^2=4
a=2
∴y=2x
おもしろい。
377132人目の素数さん
2021/07/18(日) 01:00:11.42ID:sO3id8lp
 y=x 上の点 A(5,5)   A ' (-5,-5)
 y=7x 上の点 B(1,7)   B ' (-1,-7)
とおく。
 OA = OA ' = OB = OB ' = 5√2
 ABの中点 M(3,6)
∴ 角二等分線 OM: y = 2x,

同様に y=-x/2 も角二等分線。

[面白スレ37.539]
378132人目の素数さん
2021/07/18(日) 23:20:26.33ID:+96DD1x6
>>328
正五角形が格子点で構成できないことを証明せよ
379132人目の素数さん
2021/07/18(日) 23:50:20.51ID:4Br9ekZx
どうやって>>329がダメってこじつけるの?
380132人目の素数さん
2021/07/19(月) 00:13:23.80ID:SdV6buQ+
1次独立な4つのヴェクトルを含む
∴ 4次元空間   >>333
381132人目の素数さん
2021/07/19(月) 01:25:55.73ID:m7KRMhxf
>>379
>>329 は五胞体じゃん
382132人目の素数さん
2021/07/19(月) 02:04:44.48ID:SdV6buQ+
・さんくすの使用例

■長岡京の公式

k番目の三角数を
 1 + 2 + …… + k = T_k
とおくと「図」から
k = T_k - T_{k-1},
kk = T_k + T_{k-1},
辺々掛けてたす。
Σ[k=1,n] k^3 = Σ[k=1,n] (T_k - T_{k-1})(T_k + T_{k-1})
= Σ[k=1,n] ((T_k)^2 -(T_{k-1})^2)
=(T_n)^2,

「数学セミナー」2018年3月号、NOTE
[エレ解スレ2.708]

T_n を具体的に出さない所がミソ
383132人目の素数さん
2021/07/19(月) 08:57:16.56ID:peGsGeEJ
nを自然数とする。
整数a,b,cを、-n以上n以下の範囲からそれぞれ任意に選ぶとき、
方程式ax^2+bx+c=0が実数解をもつ確率をP(n)とする。
n→∞のときのP(n)の極限値がいくら
384132人目の素数さん
2021/07/19(月) 15:07:57.82ID:qQghSgjq
>>383
これ、答えが出ないパラドックスの奴じゃないの?
385132人目の素数さん
2021/07/19(月) 16:03:56.75ID:5eWS40Ca
>>383
(41+log64)/72=0.6272067…
386132人目の素数さん
2021/07/19(月) 17:20:02.88ID:PN+v91BX
>>384
なんでそんな勘違いするんだ
387132人目の素数さん
2021/07/19(月) 18:55:16.81ID:NOS1qH6j
>>384
極限がなくてもパラドックスとは言わない。
388132人目の素数さん
2021/07/19(月) 18:55:25.17ID:SdV6buQ+
b (-n≦b≦n) を固定する。
 b^2 ≦ 4ac をみたす (a,c) の組合せは
~ 2n^2 + bb(1+log(2n/b)),
とおり。
-n≦b≦n で足すと全部で
~ (41+log64)/9・n^3
 (2n+1)^3 で割れば
 (41+log64)/72
389132人目の素数さん
2021/07/19(月) 19:00:22.68ID:SdV6buQ+
 b^2 ≦ 4ac をみたす (a,c) の組合せは
~ 2n^2 + bb(1/2 + log(2n/b)),

なんでそんな勘違いするんだ…
390132人目の素数さん
2021/07/19(月) 21:27:38.47ID:d/7RbXGf
任意じゃなくてランダムだね?
俺が計算したところでは19/36と答えが出た
ノートからここに写すのは面倒だが
391132人目の素数さん
2021/07/19(月) 21:32:43.96ID:PN+v91BX
任意と言えばランダムだろ
392132人目の素数さん
2021/07/20(火) 02:52:46.44ID:pFgl2bwe
任意
(2n+1)^3 とおりのうちどれでもいい
393132人目の素数さん
2021/07/20(火) 05:58:48.80ID:/334fn9V
>>386 >>389
ラマヌジャン風に言うと

「夢の中で女神がそう教えてくれた」

だからワイは悪くない ( '‘ω‘)
394132人目の素数さん
2021/07/20(火) 08:15:50.16ID:aoA6G9T4
>>392
「それぞれ」という日本語が読めないのか?
395132人目の素数さん
2021/07/20(火) 08:29:16.37ID:/R8C+J+N
任意の意味の話は置いといて、計算を見直してたら全然間違ってた。改めて答えは(11+log4)/24だと思う
396132人目の素数さん
2021/07/20(火) 08:48:08.32ID:/R8C+J+N
計算ミスもう一つ見つかった、正すと上の投稿者の答えと合う
397132人目の素数さん
2021/07/20(火) 13:42:09.43ID:UjTlbDZG
アホ丸出し
398132人目の素数さん
2021/07/20(火) 16:56:21.27ID:q8BYvlTm
A地点からB地点まで桃子と桜子が歩く。

桃子はA地点を出発して始終分速80mでB地点まで歩いた。

桜子は、桃子が出発して4分後にA地点を分速100mで出発して、
ABのちょうど中間地点であるM地点まで歩き、
M地点からB地点までは分速60mで歩いたところ、B地点には桃子より8分遅く着いた。

桜子はAM間で桃子を抜き、その( )分( )秒後にMB間で桃子に抜かれた。

空欄に入る( )値は何ですか。
399132人目の素数さん
2021/07/20(火) 17:55:31.12ID:CT/idB7P
41 36になった
400132人目の素数さん
2021/07/20(火) 19:11:36.05ID:TtofZzdH
三角比が理解できません。どうやって理解(暗記する?)すればいいのでしょうか。
401132人目の素数さん
2021/07/20(火) 19:38:14.66ID:4Xc622ls
>>400
正直慣れだから問題集に乗ってる簡単な問題をいっぱい解くのが良い
あと三角関数のグラフと関連付けて視覚的な情報増やすのも大切
402132人目の素数さん
2021/07/20(火) 19:41:52.43ID:pFgl2bwe
整数a,b,cを -n以上n以下の範囲からそれぞれ任意に選ぶ >>383
とは
整数aを -n以上n以下の範囲から任意に選び、
整数bを -n以上n以下の範囲から任意に選び、
整数cを -n以上n以下の範囲から任意に選ぶ
こと
403132人目の素数さん
2021/07/20(火) 20:05:50.56ID:Gd7WFBYh
ある製品が3つの部品ABCからできてて、それぞれ故障する確率は1%,2%,3%。
A,B,Cのすべてが壊れないときのみ、この製品は使える。1つだけの部品が故障して製品が使えなくなる確率は何?※部品の故障発生は独立してる。

教えてください
404132人目の素数さん
2021/07/20(火) 20:51:27.84ID:RCXd0Gbv
>>400
1:1:√2と1:2:√3の三角形をかいて、辺の比をかいて、三角比を求める
それが出来るようになったら単位円をかいて三角比を求める練習をする

>>403
☓を故障とすると下の3つの場合の確率を求めて足す

A B C
○○☓
○☓○
☓○○
405132人目の素数さん
2021/07/21(水) 02:29:12.79ID:ME1KXPTy
>>401
一般的に三角関数習うのは三角比を習った次の学年になりがち
まとめてやる学校もある
406132人目の素数さん
2021/07/21(水) 03:28:49.67ID:+B5gcO49
円関数と呼ぶべきだと誰かが言っていた
407132人目の素数さん
2021/07/21(水) 05:45:30.24ID:AsSZ0oYD
>>197 に加えよう。
408132人目の素数さん
2021/07/21(水) 19:41:44.70ID:eyUY+RjM
数学I・Aの三角比の名称は何とか覚えたのですが
単位円がよくわからないです…
(高校の数学I・Aが一冊でわかる本の90ページから)
単位円を初心者向けに解説してる動画はないでしょうか?
409132人目の素数さん
2021/07/21(水) 19:44:36.63ID:/T27AmE7
P(n) ≒ 0.6272067 - 1.916/n + 0.116/n^2 - ・・・・
410132人目の素数さん
2021/07/21(水) 19:54:56.03ID:/T27AmE7
通貨単位  円
単位記号  ¥
ISO code  JPY

http://ja.wikipedia.org/wiki/現行通貨の一覧
411132人目の素数さん
2021/07/21(水) 20:47:48.66ID:/T27AmE7
P(1) = 19/27,
P(2) = 85/125,
P(3) = 227/343,
P(4) = 481/729,
P(5) = 867/1331,
P(6) = 1421/2197
P(7) = 2171/3375,
P(8) = 3153/4913,
P(9) = 4387/6859,
P(10) = 5909/9261,
P(20) = 43545/68921,
P(30) = 142973/226981,
P(40) = 334273/531441,
412132人目の素数さん
2021/07/21(水) 23:57:52.64ID:y5wbSfWt
(V)o\o(V)
413132人目の素数さん
2021/07/22(木) 00:23:27.72ID:5+EI2k2y
三角形ABCは∠C=2×∠B < 90度を満たす。
AC=3で、また辺BC上に点HをとってAH⊥BCとなるようにすると、BH=4になった。
三角形ABCの面積を求めよ。

BCの長さとAHの長さが求まればいいとおもうのですが、
414132人目の素数さん
2021/07/22(木) 01:44:46.81ID:3b/KCL9S
>>413
AB sin B = 3 sin 2B
AB = 6 cos B

4 = AB cos B = AB^2 / 6
AB = 2√6
415132人目の素数さん
2021/07/22(木) 03:31:25.24ID:FdFHrAn3
正弦定理より
 AB/sin(C) = AC/sin(B) = BC/sin(A),
 AB/sin(2B) = AC/sin(B) = BC/sin(3B),
 AB = 2 AC cos(B),
また
 BH = AB cos(B),
これらより
 AB = √(2 AC・BH),
 cos(B) = √(BH/2AC) = √(2/3), sin(B) = 1/√3, tan(B) = 1/√2,
 cos(C) = 1/3, sin(C) = (2√2)/3, tan(C) = 2√2,
 AH = BH tan(B) = AC sin(C) = 2√2,
 BC = BH + AC cos(C) = 5,
 ⊿ABC = (1/2)AH・BC = 5√2,
416132人目の素数さん
2021/07/23(金) 08:42:12.41ID:rF+ysy7Z
>>413
AHに関するCの対称点をDとする。
対称性から△ADCは当然二等辺三角形だが、角の条件から△ADBもAB=BDの二等辺になる。
よってBD=AD=AC=3、DH=1、HC=1がわかる。面積計算はもう容易。
417132人目の素数さん
2021/07/23(金) 17:09:21.65ID:o45eDHbp
式の形の呼称で質問です(下記の係数などは適当)

① y = ax^3 + bx^2 + c x + d

② y = a(x+b)(x-c)(c-d)

各々の形式名は何でしょうか?
418417
2021/07/23(金) 17:17:44.31ID:o45eDHbp
すいません。
式の表記ミスがあるので訂正:

① y = ax^3 + bx^2 + cx + d

② y = a(x+b)(x-c)(x-d)
419132人目の素数さん
2021/07/23(金) 17:26:25.19ID:eh9tNh/y
>>417
んん!?
ただの方程式じゃねぇか
強いて言うならば

1番 … 変数xについての1変数3次関数 を4つの項で表した方程式
    (それぞれの次数で分けて4つの項からなる級数として表現されている)
2番 … 変数xについて1変数2次関数 を因数分解して1つの項で表した方程式
    (4つの因数を合成した1つの項で表現されている)
420132人目の素数さん
2021/07/23(金) 17:31:26.47ID:eh9tNh/y
一般的な表記、
1変数N次の関数を各次数で分けて並べて
単運に全部を足し算しただけの級数表現、それなりに見やすい。

因数分解をして1項にした表記。
とても見やすい、
変数xがどういう値の時にその式が
0の値を取るのかが分かりやすくて便利便利だ。
421132人目の素数さん
2021/07/23(金) 18:21:09.98ID:tkzvZdAL
>>376
イナさんはコロナのワクチン打ちましたか?
422132人目の素数さん
2021/07/23(金) 20:51:24.87ID:jOUYqaHi
>>418
2次関数の決定(基本形・一般形・分解形)
https://examist.jp/mathematics/quadratic-function2/nijikansu-kettei/

こんな感じで呼ばれることもあるが気にしなくてオッケー
後は前者の方を一般式と呼ぶときもある
423132人目の素数さん
2021/07/23(金) 20:57:01.48ID:K2K75Nik
へー、名前ついてるんだ
初めて知ったけど死ぬまで使うことがなさそうな知識
424132人目の素数さん
2021/07/23(金) 21:05:41.28ID:jOUYqaHi
教える方が名前があると便利だから使うときがあるけど生徒の方は知らなくてもいい

円の周上の3点が分かっているとき
代入するなら一般形と基本形どっちがいいとと思う?
みたいな感じで使う
425132人目の素数さん
2021/07/23(金) 22:32:43.85ID:o45eDHbp
>>419-420
>>422
>>424
有り難うございます
426イナ ◆/7jUdUKiSM
2021/07/24(土) 12:44:35.00ID:Z66jTmg/
>>376
>>398
桃子はAB間をAB/80(分)で歩く。
桜子はAM間をAB/200(分)で、
MB間をAB/120(分)で歩き、
その差が4分だから、
AB/120-AB/200=4
辺々600倍して5AB-3AB=2400
AB=1200(m)
AM間600mを桃子は600/80=7.5(分)
すなわち7分30秒で歩いたが、
桜子はあろうことか亀、4分遅れで出たで、
7分30秒-4分=3分30秒
で着かないかん。
実際3分30秒で桜子が行けたとこは、
100×3.5=350(m)
これは題意の桜子はAM間で桃子に追いついたに矛盾。
捜査は継続。
427イナ ◆/7jUdUKiSM
2021/07/24(土) 18:44:52.32ID:qHitTMsa
>>426
>>398
16分0秒かなぁ
428イナ ◆/7jUdUKiSM
2021/07/24(土) 21:17:47.04ID:qHitTMsa
>>427訂正。
>>398
桃子はAB間をAB/80(分)で歩く。
桜子はAM間をAB/200(分)で、
MB間をAB/120(分)で歩くから、
AB/80=4+AB/200+AB/120-8
辺々1200倍すると、
15AB=6AB+10AB-4800
AB=4800(m)
桃子はAB間を4800/80=60(分)で歩き、
AM間とMB間を30分ずつで歩く。
桃子がAを出てx分後に桜子が追いついて、
そのy分後に桃子が桜子に追いつくとすると、
80x=100(x-4)
20x=400
x=20(分)
80y=100×10+60(y-10)
y=20(分)
∴20分0秒
429132人目の素数さん
2021/07/24(土) 21:18:33.39ID:GKT+lnQ6
気象庁は広告収入でやってくそうだから、見捨てていいよ。
430イナ ◆/7jUdUKiSM
2021/07/24(土) 23:54:34.28ID:qHitTMsa
>>428
>>413
∠B=2∠Cより、
CAの延長上に、
∠ABC=∠ABDなるDをとり、
BD上にBC//EAなるEをとると、
∠ABC=⚪︎,∠CAH=✖として、
∠BCA=⚪︎+⚪︎+✖=90°
∠BAH=⚪︎+✖
∠DEA=∠DAE=⚪︎+⚪︎
∠ADE=✖+✖
∠BAE=⚪︎
AE=BE=3=4-HC
HC=1
BC=4+1=5
ピタゴラスの定理より、
AH=√(3^2-1^2)=2√2
∴△ABC=(1/2)×5×2√2=5√2
431132人目の素数さん
2021/07/25(日) 03:37:33.73ID:zIWV+ma3
半径rの球に正四角錐Vが内接するとする。
(1)高さをhとしたとき、Vをhを用いて表せ。
(2)Vの最大値を求めよ。
432132人目の素数さん
2021/07/25(日) 07:35:55.08ID:0rv1EuHc
(1)
 底面積は S(h) = h(4r-2h),
 Vの体積をV(h) とすると
 V(h) = (1/3)hS(h) = (1/3)hh(4r-2h),
(2)
 {h, h, 4r-2h} の相加平均は 4r/3 より
 V(h) ≦ V(4r/3)
  = (1/3)(4r/3)^3     (AM-GM)
  = (64/81)r^3,
433イナ ◆/7jUdUKiSM
2021/07/25(日) 12:05:48.81ID:Rspbve45
>>430
>>431
(1)正四角錐の底面積Sは、
ピタゴラスの定理よりS={r^2-(h-r)^2}×2=2(2rh-h^2)
∴V=2h(2rh-h^2)/3
(2)V'=(4r/3)2h-(2/3)3h^2=(2h/3)(4r-3h)=0のとき、
h=4r/3
∴Vmax=(2/3)(4r/3)(8r^2/3-16r^2/9)=(8r/9)(8r^2/9)=64r^3/81
434132人目の素数さん
2021/07/25(日) 15:50:49.36ID:3tYxiRCJ
この問題を解説してほしい。
y=f(x)をx軸方向にp、y軸方向にqだけ平行移動する。
さらに原点中心にt倍したものを、グラフとする関数をy=g(x)するときのg(x)を求めよ。
435132人目の素数さん
2021/07/25(日) 15:54:49.30ID:vEQJFuJQ
>>434
「逆に戻すと元の関数を満たす」って考える
436132人目の素数さん
2021/07/25(日) 16:15:45.27ID:3tYxiRCJ
>>435
つまり、g(x)から逆算して求めたx,yがg(x)を満たすということ?
437132人目の素数さん
2021/07/25(日) 16:33:41.18ID:hCeqdiqY
まず日本語を勉強するところか
438132人目の素数さん
2021/07/25(日) 17:06:42.08ID:Zv6sSvRh
>>436
f(x, y) = 0 と f(x - p, y - q) = 0 の関係を考えてみろよ
439132人目の素数さん
2021/07/25(日) 17:38:14.79ID:o0vs16EQ
正弦定理の問題なんですが、どうやって計算すればいいのでしょうか?
左がa/SinAです

4 b
─  =  ─
1/2     √2/2       
440132人目の素数さん
2021/07/25(日) 17:41:44.94ID:o0vs16EQ
ズレてましたすいません
bは右です
441132人目の素数さん
2021/07/25(日) 21:05:24.67ID:pMx3Ql/8
>>438
つか(x,y)と(x-p,y-q)の関係だな
442132人目の素数さん
2021/07/25(日) 21:07:57.50ID:0rv1EuHc
>432
(2)
V(4r/3) - V(h)
 = (1/3) (4r/3) S(4r/3) - (1/3) h S(h)
 = (1/3) (4r/3)^3 - (1/3) hh(4r-2h)
 = (1/81) {(4r)^3 - 27hh (4r-2h}
 = (1/81) (4r-3h)^2 (4r+6h)
 ≧ 0,
クロネッカーも満足…
443132人目の素数さん
2021/07/26(月) 01:47:20.19ID:py/1mRjO
a[1]=1、a[n+1]=a[n^2]+nによって定められる数列a[n]において、次の問いに答えよ。

(1)a[2]、a[3]、a[4]、a[5]を求めよ
(2)一般項a[n]を求めよ

a[n^2]が入っている漸化式は初めて見るので、結構考えたんですが分かりませんでした・・・
すみませんがお願いしますm(__)m
444132人目の素数さん
2021/07/26(月) 02:34:43.10ID:+XhbJxOj
>>443

> a[1]=1、a[n+1]=a[n^2]+nによって定められる数列a[n]において、次の問いに答えよ。

定まらんやろ
漸化式は

a[2]=a[1]+1
a[4]=a[3]-2
a[9]=a[4]-3
a[16]=a[5]-4
......

3以上の平方数でないnについてa[n]はなんの束縛もありませんがな
445132人目の素数さん
2021/07/26(月) 08:21:23.43ID:+QTxx7eq
>>439
a/sin(A) = b/sin(B) に代入したんだろうけど
代入の前に分母払って
a sin(B) = b sin(A)
としてから代入したら?
446132人目の素数さん
2021/07/26(月) 08:36:54.56ID:h8hPApVY
>>443
a[n+1] = a[n]^2 + n の間違い?

だとしたら
a[2] = a[1]^2 + 1 = 1^2 + 1 = 2
a[3] = a[2]^2 + 2 = 2^2 + 2 = 6
a[4] = a[3]^2 + 3 = 6^2 + 3 = 39
a[5] = a[4]^2 + 4 = 39^2 + 4 = 1525
447イナ ◆/7jUdUKiSM
2021/07/26(月) 08:47:33.48ID:QA+V8h6T
>>433
>>443
a[1]=1だから、
n=1のときa[2]=a[1+1]=a[1^2]+1=a[1]+1=1+1=2
n=2のときa[3]=a[2+1]=a[2^2]+2=a[4]+2=a[9]+5
n=3のときa[4]=a[3+1]=a[3^2]+3=a[9]+3=a[3]-2
n=4のときa[5]=a[4+1]=a[4^2]+4=a[16]+4
n=5のときa[6]=a[5+1]=a[5^2]+5=a[25]+5
n=6のときa[7]=a[6+1]=a[6^2]+6=a[36]+6
n=7のときa[8]=a[7+1]=a[7^2]+7=a[49]+7
n=8のときa[9]=a[8+1]=a[8^2]+8=a[64]+8=a[4]-3=a[3]-5
n=9のときa[10]=a[9+1]=a[9^2]+9=a[81]+9
n=10のときa[11]=a[10+1]=a[10^2]+10=a[100]+10
n=15のときa[16]=a[15+1]=a[15^2]+15=a[225]+15=a[5]-4
(1)a[2]=2
a[3]=
a[4]=
a[5]=
(2)一般項a[n]=
448132人目の素数さん
2021/07/26(月) 11:57:32.02ID:py/1mRjO
>>444、447
ありがとうございます。やっぱりa[2]までしか求まらないっぽいんですよね・・・

>>446
問題ではa[n^2]になってます。a[n]^2の間違いっぽいのでそっちで一般項考えてみます!
a[n^2]だと大学数学とかになるっぽいですかね?問題集とか難問数列とかで検索したけど結局解き方見つからなかったです
449132人目の素数さん
2021/07/26(月) 15:27:27.72ID:Or3MhAlh
>>448
その「問題」とやら、写真に撮ってアップして欲しい。
450132人目の素数さん
2021/07/26(月) 15:37:25.36ID:GsCldtRd
数学から逃げ続けた詩文学生です。
航空大学校受験のために数学を学び直したいのですが、やはり中学数学からやるべきでしょうか?
また、その際におすすめの参考書も教えてほしいです。
451132人目の素数さん
2021/07/26(月) 15:50:18.27ID:SvyzDUoa
航空大学校の過去問見たけど簡単過ぎだろ
倍率は高いのにここまで簡単にするのか
452132人目の素数さん
2021/07/26(月) 15:55:07.49ID:nOayWnRd
実際には適性のほうが重視されるんじゃね
453132人目の素数さん
2021/07/26(月) 15:56:41.89ID:GsCldtRd
身体検査でフェイルする方が多いですね。
454132人目の素数さん
2021/07/26(月) 15:59:31.58ID:ff6OnH01
こちらの問題の答えと途中式見せてもらえませんか?
出来るだけ分かりやすくしてくださると有難いです

高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚
455132人目の素数さん
2021/07/26(月) 16:28:50.38ID:+BXovqXV
1 : x = (x - 1) : 1
x(x - 1) = 1
x^2 - x - 1 = 0
x > 0 だから x = (1 + √5)/2

S'' の長辺 = S' の短辺 = x - 1 = (√5 - 1)/2
S'' の短辺 = 1 - (x - 1) = 2 - x = (3 - √5)/2
456132人目の素数さん
2021/07/26(月) 17:23:24.69ID:1a4zpOSM
誰かオススメの参考書買ってくれません軽
457132人目の素数さん
2021/07/26(月) 17:23:31.95ID:1a4zpOSM
>>456
か?
458イナ ◆/7jUdUKiSM
2021/07/26(月) 17:42:58.26ID:QA+V8h6T
>>447
>>454
長さxの長辺から長さ1の正方形の一辺を引いたx-1と、
S'の短辺の長さ1/xが等しいから、
x-1=1/x
x^2-x-1=0
x=(1+√5)/2
S"の長辺=S'の短辺=1/x
=2/(1+√5)
=2(√5-1)/(5-1)
=(√5-1)/2
S"の短辺=1/x^2
=(√5-1)^2/2^2
=(6-2√5)/4
=(3-√5)/2
459132人目の素数さん
2021/07/26(月) 19:00:48.85ID:0WJqwbpl
0<r<1である定数r
正の数列x[n], y[n]があって漸化式 x[n+1]≦r*x[n] + y[n] を満たす

y[n]が0に収束するとき、x[n]も0に収束するといえますか?
460132人目の素数さん
2021/07/26(月) 19:17:09.61ID:V875y+OQ
>>455
>>458
ありがとうございます
理解出来ました
461132人目の素数さん
2021/07/26(月) 19:24:00.97ID:N2SKaTjA
>>446
http://oeis.org/A028300/
462132人目の素数さん
2021/07/26(月) 19:43:41.55ID:V875y+OQ
申し訳ないのですが、最後にこちらの問題の解き方を見せて頂けないでしょうか
お恥ずかしいですが、非常に数学が苦手なもので...

高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚
463132人目の素数さん
2021/07/26(月) 20:03:51.66ID:N2SKaTjA
〔類題〕
cを複素定数とする。
z[0] = 0, z[n+1] = (z[n])^2 + c によって定められる複素数列z[n]において、
n→∞ のとき |z[n]| が発散しないような定数cの全体を求めよ。
464132人目の素数さん
2021/07/26(月) 20:56:48.10ID:EEzUd4E1
二等辺凹四角形の性質について質問です。

2本の対角線すべてが対称軸
凹角とその対角それぞれを挟む2辺の長さがそれぞれ等しい
他に有名なものはありますか?
底辺を共有する二等辺三角形をイメージしてはいますが。
465132人目の素数さん
2021/07/26(月) 21:42:26.99ID:EEzUd4E1
a+b=9が成り立つとき、
10a+2bは何の倍数であるか、と聞かれて
9と答えたら不正解と言われました。その理由がわかりますか?
466132人目の素数さん
2021/07/26(月) 21:43:54.35ID:EEzUd4E1
>>465
a+2b=9でした。ごめんなさい。
467132人目の素数さん
2021/07/26(月) 21:53:48.76ID:BqF1sgl5
18の倍数って言わなきゃダメとか?
468132人目の素数さん
2021/07/26(月) 22:13:31.63ID:EEzUd4E1
>>467
後から気付いたけど、結果的にそういうことでした。
a+2b=9だから、aは必ず奇数であるとして、aの10倍と2bの和が18の倍数である。いきなりこんなの証明できる方法ないです。ただ1の位が偶数だから、というだけの話。
469132人目の素数さん
2021/07/26(月) 22:21:52.28ID:Ftx48Rox
>>459
X = limsup{x[n]}>0とする
必要なら十分大きいnから咲きだけを考えてy[n]<Xr(1-r)/2として良い
x[n+1]/r^(n+1)≦x[n]/r^n+Xr(1-r)/r^(n+1)/2
により
x[n]<x[1]r^n+X/2
limsupをとって矛盾
470132人目の素数さん
2021/07/26(月) 22:36:54.12ID:BqF1sgl5
>>468
10a+2b=2(5a+b)だからa、bが整数なら必ず偶数だよ
471132人目の素数さん
2021/07/26(月) 23:02:32.82ID:EEzUd4E1
>>470
ありがとうございます。
a+2bが3または9の倍数であるなら、
5a+bもまた3または9の倍数である、と考えて差支えないということですね。
472132人目の素数さん
2021/07/26(月) 23:23:29.13ID:AnhhfNqa
差支えないのですが、差支えないという言い方は少々差支えがあると思います
473 【中吉】
2021/07/27(火) 00:37:43.62ID:0KGcjovd
>>458
>>462
ゴルフ A1B1C2
テニス A2B1C1
この割合でABCの材料を使って、
利益の出るテニスボールをなるべく作ると、
———ゴルフ テニス
A50/日 10   40   10+40=50(上限)
B30/日 10   20   10+20=30(上限)
C50/日 20   20   20+20=40(8割)
これだけの材料をフルに使って、
ゴルフボール10個、テニスボール20個が作れる。
一個あたりの利益は、
ゴルフボール100円
テニスボール150円
利益は100×10+150×20=1000+3000=4000(円)
あんまり商才ないでわからんね。
あくまで利益が最大になりそうな勘。
∴ゴルフボール10個、テニスボール20個
474132人目の素数さん
2021/07/27(火) 04:33:07.65ID:I/HfgbjD
>>462
OCRでテキスト化

4.あるスポーツ用品の生産工場では、ゴルフボールとテニスボールを3つの材料A, B, C を使 って以下のような条件のもとで生産している.
(a)ゴルフボールを1つ生産するには A が1, B が 1, C が2だけ必要である。 (b)テニスボールを1つ生産するには A が2,B が 1, Cが1だけ必要である。 (C) 材料Aの1日あたりの使用可能量は50である。 (d) 材料Bの1日あたりの使用可能量は30である.
(e) 材料Cの1日あたりの使用可能量は 50 である。 このとき,ゴルフボールを1つ生産するたびに 100円の儲けがあり,テニスボールを1つ生 産するたびに 150円の儲けがあるとすると,この工場の利益を最大にするためには1日にそ れぞれのボールを何個ずつ生産すればよいか。
475132人目の素数さん
2021/07/27(火) 04:43:34.53ID:sIzR5Uv8
>>463
 マンデルブロ集合
 c∈R なら -2≦c≦1/4
476132人目の素数さん
2021/07/27(火) 04:54:42.46ID:I/HfgbjD
ゴルフボール5個、テニスボール25個で利益4250円になっるんじゃないの?
477132人目の素数さん
2021/07/27(火) 04:57:05.93ID:I/HfgbjD
>>476
これだとCが材料不足になるので撤回。
478132人目の素数さん
2021/07/27(火) 05:05:19.38ID:I/HfgbjD
x:ゴルフボールの数
# 2*x+(30-x)<=50
# x+2*(30-x)<=50
を解いて10<=x<=20
100*x+150*(30-x)が最大になるのはx=10のときでイナ氏の答の通りです。
479132人目の素数さん
2021/07/27(火) 05:12:09.69ID:I/HfgbjD
>>453
昔はメガネかけていたら駄目とかじゃなかったかな?
480132人目の素数さん
2021/07/27(火) 05:38:02.19ID:Ckxa1Scp
>>468
いくつかの条件を満たす (a, b) で実験して
推測するもんじゃないの? この手のものは。
実験すれば 18 の倍数かもと気づく。
あとはどうやって証明写真するか。
481132人目の素数さん
2021/07/27(火) 07:18:22.56ID:sIzR5Uv8
漸化式より
 x[m+n] ≦ y[m+n-1] + r・x[m+n-1]
  ≦ …
  ≦ Σ(k=1,n) y[m+k-1] r^(n-k) + r^n・x[m]

仮定より 任意のε>0 に対して
 k>0 ⇒ y[m+k-1] < ε
となる自然数mがある。さらに
 r^n・x[m] < ε,
となる自然数nがある。

∴ m,n がじゅうぶん大きいとき
 x[m+n] ≦ εΣ(k=1,n) r^(n-k) + r^n・x[m]
  < ε/(1-r) + ε,

ε>0 は任意だったから
 x[m+n] → 0   (m→∞, n→∞)
482132人目の素数さん
2021/07/27(火) 07:26:52.76ID:sIzR5Uv8
いずれにしても、高校数学ぢゃないね。
483132人目の素数さん
2021/07/27(火) 09:45:56.33ID:E2F7DMWK
そもそもlimsup使っていいなら
limsup(xn)≦r limsup(xn) + limsup(yn)
∴ limsup(xn) ≦ limsup(yn)/(1-r) = 0
で終わりだった
484132人目の素数さん
2021/07/27(火) 21:41:05.71ID:HgtssdC4
感覚的には明らかなような気もするですが
リミットスープとか難しいことを使わないと証明できないということは
高校生にとってはこれは明らかなこととして証明せずに述べていいということでしょうか。
485132人目の素数さん
2021/07/27(火) 23:22:23.03ID:sIzR5Uv8
明らかぢゃないけど、(証明略す) として述べていいだろうね。
486132人目の素数さん
2021/07/28(水) 03:43:46.24ID:lR8lCF8l
証明を略すのは
前戯を略すようなものだ

って元彼がゆってた
487イナ ◆/7jUdUKiSM
2021/07/28(水) 11:22:52.57ID:gARCGEms
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;証明なんてのはね、
;;;;;;;;;;/∩∩ ∩∩ /\;;;;;;;;言わく正しさ明らかなんだよ
;;;;;;;;/((^o`-。-))/「;;;;;;;;;;;;;;;;;;;;;;;;;♪……
;;;;;;;/ っц'υ⌒υ/|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;‖ ̄UUυυ‖   |;;;;;;;;;;;;;;;;;;;;;;;;問題は、
;;;;;‖ □ □ ‖ /|;;;;;;;;;;;;;;;;;;;;;;; 解けるか否か。
;;;;;‖______‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;; あははは……
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;ただし前戯は、
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;; なりゆきを
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;; 左右することも
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; あるね。
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖,彡ミ、;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖川` , `; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/U⌒U、 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄ ̄;_~U U~ ;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
>>473
488132人目の素数さん
2021/07/28(水) 12:46:59.17ID:/Rap95FB
>>487
爺さんのようにイナさんは60代でも子供作る能力はあると思いますか?
489132人目の素数さん
2021/07/28(水) 15:30:48.66ID:g6PfSsvr
出し過ぎは打ち止めを早めるし、出すな過ぎは打ち止め前倒しを早める
理想的な整備点検が成されれば仕込める年齢は延びるだろう

80歳以上でも仕込めた例があるが詳細はネット検索で
490132人目の素数さん
2021/07/28(水) 16:20:18.39ID:lR8lCF8l
将たる者、出すべからざる時と
出すべからざる場所を知れば
これ100戦危うからん

(引用: なんとかの平方)
491イナ ◆/7jUdUKiSM
2021/07/29(木) 01:23:38.23ID:i4fVJ0PJ
>>487
祖母は巳年だった。
もしかしたら祖父も巳年だったんじゃないか。
それなら祖父が二回り年上の63歳のとき、
祖母は39歳でおとんが産めたとして矛盾がない。
492132人目の素数さん
2021/07/29(木) 06:33:48.52ID:/l6lCVHU
昔は10人兄弟とかあったから、40代での出産は昔からあったと思う。
493132人目の素数さん
2021/07/29(木) 09:37:52.35ID:GOSvBso/
>>484
リミットスープってどんな味?
494132人目の素数さん
2021/07/29(木) 09:58:10.78ID:vpJaS94y
>>490
ワイの最高のボケが無視された。
孫子の兵法な。
495132人目の素数さん
2021/07/29(木) 11:52:04.45ID:XWG4WUvJ
「1兆円未満は誤差です」ってやつ?
496132人目の素数さん
2021/07/29(木) 15:06:51.81ID:vpJaS94y
以下の微分についての説明って解釈として正しいですか?
h を dx に置き換えるのって…あり?
↓↓ ↓
辺の長さ x で正方形S1をつくる
面積はS1=x^2 である
辺をそれなりの長さ h (h > 0) だけ 延長して
辺の長さ (x+h) で正方形S2をつくる
面積はS2 = (x+h)^2 である

ここで面積の差 をdS とすると…

dS = S2-S1
= (x+h)^2 - x^2 = 2hx + h^2

ここで両辺を h で割ると

dS/h = (2x + h) … E1

長さhをゼロに近づけていくと…
右辺は
Lim(h-->0) { 2x+h } = 2x … E2

左辺は 「 hがxの微小量 dx と置き換えられる」 ので
Lim(h-->0) { dS/h } = dS/dx … E3

従って E1、E2, E3 から dS/dx = 2x を得る。
497イナ ◆/7jUdUKiSM
2021/07/29(木) 17:58:50.08ID:o9mZWHyZ
>>491
数えだから、38歳と62歳だね。
おとん一月生まれだし。
498132人目の素数さん
2021/07/29(木) 21:09:43.74ID:3BTsk3O3
>>494
つまんねーんだよボケ
499132人目の素数さん
2021/07/30(金) 01:41:55.13ID:8yGB7Kuy
n を自然数として、次のような数列 a_(n) n=1,2,・・・の例を与えよ
a_(1)=1 とすれば lim_[n→∞]a_(n) は発散し
a_(1)=0 とすれば lim_[n→∞]a_(n) は 0でない有限の値に終息する

但し、a_(n) は任意の自然数i,j(i≠j)に対してa_(i)≠a_(j) とする。

#問題の不備を突いた「トンチ解」でもいいっすよ。
500132人目の素数さん
2021/07/30(金) 03:07:42.61ID:9xHtCE9B
>>498
よく言えるなぁ
きみは正直だな
501132人目の素数さん
2021/07/30(金) 03:20:33.91ID:FCXZx7Jc
>>499
質問スレの意味が分からないのかな
知的障害の疑いがあるので検査した方がいいですよ
502132人目の素数さん
2021/07/30(金) 08:42:18.24ID:oWjQc2j0
>>493
カロリミット味だよ。
 http://www.fancl.co.jp/calo/index.html
503132人目の素数さん
2021/07/30(金) 13:17:08.41ID:mb9iKq6M
統計学(主に確率)について質問です 高校の問題で出たのですが、、、

偶数の目が奇数の目より2倍出やすいサイコロがある A:3以下の目が出る B:奇数の目が出る このとき、Pr(B)、Pr(AUB)、Pr(A)、Pr(Ā)、Pr(ĀカップB)の各々の確率を求めなさい

という問題ですが、確率が苦手なため、皆目見当もつきません。ごめんなさい、、。解き方並びに回答をご教示ください。よろしくお願い致します
504132人目の素数さん
2021/07/30(金) 13:43:21.61ID:uKcPhv7v
また来た
505132人目の素数さん
2021/07/30(金) 16:50:06.60ID:poq6OflK
>>503
100万回のシミュレーション解(検算用の近似値)

> # Pr(B) 3/9
> replicate(k,B(dice())) |> mean()
[1] 0.333233
> # Pr(A∪B) 5/9
> y=replicate(k,dice())
> (A(y)|B(y)) |> mean()
[1] 0.555745
> # Pr(A) 4/9
> replicate(k,A(dice())) |> mean()
[1] 0.444664
> # Pr(¬A)
> (!replicate(k,A(dice()))) |> mean()
[1] 0.555295
> # Pr(¬A∪B) 7/9
> y=replicate(k,dice())
> (!A(y)|B(y)) |> mean()
[1] 0.777306
506132人目の素数さん
2021/07/30(金) 16:51:46.38ID:poq6OflK
積集合で∩、和集合で∪に変換されるんだな。
かつ または だと ∧ ∨ しか出なかった。
507132人目の素数さん
2021/07/30(金) 16:59:59.55ID:Y2YvX24h
尿瓶は引っ込んでろ
508132人目の素数さん
2021/07/30(金) 17:08:19.02ID:BSJpT001
尿瓶の自演かな
509132人目の素数さん
2021/07/31(土) 04:17:03.38ID:BYH9BoFZ
自演認定厨=尿瓶洗浄係

職種の言えない医療従事者=尿瓶洗浄係(罵倒厨の公式)
510132人目の素数さん
2021/07/31(土) 04:23:20.17ID:x9OYdvkG
アドバイスをお願いします.

P=(1+x+x^4+x^9+x^16+x^25+・・・+x^(n^2))^4
の展開式についてです.
次数の低い方から並べて,1,x,・・・,x^kまで現れて,
x^(k+1)の項が現れないとします.
このとき,
Q=(1+x+x^4+x^9+x^16+x^25+・・・+x^(n^2)+x^((n+1)^2))^4
を展開すると,
少なくとも,1,x,・・・,x^(k+(2n+1))までは
現れるといえるのでしょうか?

次のように考えました.
Qの展開式にはPが現れるので,
1,x,・・・,x^kまでは現れる.
R=(1+x+x^4+x^9+x^16+x^25+・・・+x^(n^2))^3の中には,
x^(k-n^2)があって,
Qの中には,x^(k-n^2)×x^((n+1)^2)が現れるので,
1,x,・・・,x^(k+(2n+1))までは現れる.

いかがでしょうか?
511132人目の素数さん
2021/07/31(土) 04:56:41.27ID:8TW+IUEt
ガチャの期待値計算機ってあるけど↓
https://appmedia.jp/resemara/3296788
これって期待値であってるの?
512132人目の素数さん
2021/07/31(土) 06:07:20.74ID:EMGITI/7
>>510
あかんやろ
513132人目の素数さん
2021/07/31(土) 07:23:13.07ID:Ovx6YsUM
尿瓶は深夜早朝にしか書き込めない穀潰し
514511
2021/07/31(土) 09:15:15.16ID:8TW+IUEt
よろしければご回答をお願いします。
515132人目の素数さん
2021/07/31(土) 09:22:29.74ID:h6e1n9r5
>>511
確率やね
516132人目の素数さん
2021/07/31(土) 09:45:36.19ID:8TW+IUEt
>>515
ただの確率でしたか。
期待値ってたくさん試行した時の平均かなんかだったのでおかしいと思ってました。
どうもありがとうございます。
517132人目の素数さん
2021/07/31(土) 22:41:29.12ID:ey5v7g2r
濃度3%, 7%, 12%の3種類の食塩水がそれぞれ200gずつある。
これらの全部または一部を混ぜ合わせて、濃度6%の食塩水をできるだけたくさん作りたい。
6%の食塩水は最大で何gできるか。


普通の混合算となんか違くてよくわからません。
518132人目の素数さん
2021/07/31(土) 23:24:19.87ID:69rFrQs9
3x+7y+12z=6
0≦x,y,z≦200
においてx+y+zの最大値
線形計画法でググれば吉
519132人目の素数さん
2021/08/01(日) 01:51:38.67ID:LKpSkftp
>>518
それだと(x,y,z)=(2,0,0)が最大なんですが。
520132人目の素数さん
2021/08/01(日) 02:49:44.38ID:kHgSiumJ
>>518
1行目が
3x+7y+12z=6(x+y+z) やね
521132人目の素数さん
2021/08/01(日) 03:55:32.87ID:8IWzcdx3
全部混ぜたら 7.33% となって 濃すぎる。
→ 最も濃い 12% から減らす。
3*200 + 7*200 + 12*z = 6*(200+200+z)
z = 200/3 = 66.7 (g)
200 + 200 + z = 466.7 (g)
522132人目の素数さん
2021/08/01(日) 06:00:57.13ID:8wcFlyJz
3x+7y+12z=6x+6y+6z
z=x/2-y/6
x+y+z=(3/2)x+(5/6)y
0<=x<=200
0<=y<=200
0<=x/2-y/6<=200
3x-1200<=y<=3x
でプログラムを組んで

f=\(x,y){
if(x<0|x>200|y<0|y>200|y<3*x-1200|y>3*x) return(0)
else return((3/2)*x+(5/6)*y)
}

> optim(c(100,100),\(xy) f(xy[1],xy[2]),control = list(fnscale=-1))
$par
[1] 200 200

$value
[1] 466.6667

$counts
function gradient
223 NA

$convergence
[1] 0

$message
NULL
x=200
y=200
のとき最大値466.6667

検算終了!
523132人目の素数さん
2021/08/01(日) 07:23:54.18ID:BC5L+vhM
またプログラムキチガイが出て来たw
524132人目の素数さん
2021/08/01(日) 08:16:34.68ID:ibf2pIwH
暗算でも直感でも山感でも正解が出せればいい。
実地臨床では近似値で十分。
複数の解法で数値が合致すれば正解の確信が持てる。
同じ誤ったアルゴリズムでシミュレーションすると誤答の再現になることもたまにある。
525132人目の素数さん
2021/08/01(日) 09:12:17.79ID:pQRNKHTU
ここ数学スレで臨床医のスレではないですよ
自演までして荒らさないでね
526132人目の素数さん
2021/08/01(日) 09:14:16.10ID:B9So9v0B
尿瓶はスレタイ読めないからね
527132人目の素数さん
2021/08/01(日) 10:05:13.19ID:MJn60cIh
そもそもリニアプログラミングでプログラミングの初歩の初歩の問題
自演かと思いきやアホみたいなレスwwwww
528132人目の素数さん
2021/08/01(日) 11:07:47.43ID:+M+vRgyw
小中学校範囲の算数・数学の問題のスレ Part 57
http://2chb.net/r/math/1618398330/

完全に糖質だな
529132人目の素数さん
2021/08/01(日) 13:41:26.50ID:8IWzcdx3
〔類題〕
濃度3%, 7%, 12%の3種類の食塩水がそれぞれ200gずつある。
これらの全部または一部を混ぜ合わせて、濃度4.5%の食塩水をできるだけたくさん作りたい。
4.5%の食塩水は最大で何gできるか。
530132人目の素数さん
2021/08/01(日) 15:07:35.17ID:BC5L+vhM
何で類題を書くんだ?
誰の為の問題なんだ?
目的は何だよ
プログラムキチガイ用の問題か
キチガイの自演か?
531132人目の素数さん
2021/08/01(日) 15:10:20.48ID:tJOi09mq
バカだから
532132人目の素数さん
2021/08/01(日) 16:36:43.38ID:YoY6Ouyy
基幹病院から低ナトリウム血症の患者が紹介入院になった。
まあ、Na126だから生食でゆっくり補正すればいいのだが、
稀に3%食塩水を作る必要がでてくることもある。
まあ、急速補正するとhyperosmotic myelynolysis syndrome(旧称central pontine myelynolysis)を起こしうるから気長に点滴。
533132人目の素数さん
2021/08/01(日) 16:38:26.01ID:YoY6Ouyy
紙と鉛筆を使うかわりにプログラムを使う。
尻を拭くのにトイレットペーパーを使うのとさほど変わらん。
まあ、素手で拭くという奴がいるかもしれん。
534132人目の素数さん
2021/08/01(日) 16:41:20.32ID:tJOi09mq
>>533
お前は尻を拭くのに画用紙を使うキチガイなのが分からないみたいだな
535132人目の素数さん
2021/08/01(日) 17:29:56.16ID:YoY6Ouyy
>>529
> calc(3,7,12,4.5,200,200,200)
$par
[1] 200 120

$value
[1] 320

【類題】
濃度3%, 7%, 12%の3種類の食塩水がそれぞれ300,200,100gずつある。
これらの全部または一部を混ぜ合わせて、濃度4.5%の食塩水をできるだけたくさん作りたい。
4.5%の食塩水は最大で何gできるか。
> calc(3,7,12,4.5,300,200,100)
$par
[1] 300 180

$value
[1] 480
536132人目の素数さん
2021/08/01(日) 17:30:56.85ID:YoY6Ouyy
>>534
いや、職種を言えない医療従事者はライセンス不要の仕事しかできない、つまり、尿瓶洗浄係
Q.E.D.
537132人目の素数さん
2021/08/01(日) 17:31:50.72ID:YoY6Ouyy
>>534
ところで尿瓶洗浄係って素手で尿瓶洗浄するのか?
昔の産科医は素手で帝王切開していたとかきいたなぁ。
538132人目の素数さん
2021/08/01(日) 17:37:56.66ID:pozt5FU/
>>537
お前は画用紙で尻拭いてキチガイ認定されてろww
それにしても汚い表現ばかり思いつくんだな。
さすがは尿瓶だわ
539132人目の素数さん
2021/08/01(日) 17:51:18.56ID:8IWzcdx3
正常な生体  Na 135~145 meq/L
生理的食塩水 Na 154 meq/L
3%食塩水   Na 513 meq/L  (重症)
ぐらいかな
540132人目の素数さん
2021/08/01(日) 17:57:54.38ID:YoY6Ouyy
臨床応用問題にできるな。
今日は基幹病院から低ナトリウムによる意識障害患者が搬送されてきた。
まあ、高張食塩水が必要な症例ではないけど。

【問題】
低ナトリウム血症の治療用に3%の食塩水を作る。
注射用蒸留水が100g、生理食塩水(0.9%)が100g、10%食塩水が60gが手元にあるとする。
濃度3%の食塩水をできるだけたくさん作りたい。3%の食塩水は最大で何gできるか。
541132人目の素数さん
2021/08/01(日) 17:59:45.16ID:YoY6Ouyy
>>538
尿瓶とは職種を言えない医療従事者=尿瓶洗浄係(シリツ医大スレでシリツ卒と判明)が扱っている容器のことである。
素手で洗浄してんのかな?
542132人目の素数さん
2021/08/01(日) 18:19:45.25ID:pozt5FU/
>>541
そもそも尿瓶がどうとか言ってきたのお前だからなw
お前は素手でも画用紙でもどっちでもいいからずっと尻拭いてろw
543132人目の素数さん
2021/08/01(日) 18:28:35.73ID:pQRNKHTU
>>541
ここでの尿瓶とは君のことだよ
544132人目の素数さん
2021/08/01(日) 20:30:35.17ID:YoY6Ouyy
>>540
【臨床応用問題】

病院によってはコンクライトNaことNa補正用食塩水2.5mEq/mL(20mL)を採用しているところもある。
NaClの分子量を58.5、水の比重を1とする。
注射用蒸留水100mL、0.9w/v%生理食塩水100mL、コンクライトNa1管が手元にあるときに
3w/v%の食塩水をなるべく多く作りたい、何mL作成可能か?
545132人目の素数さん
2021/08/01(日) 20:35:35.94ID:YoY6Ouyy
>>543
尿瓶とは容器を指す、
尿瓶洗浄係は人物を指す。
ライセンスに基づいて仕事をしている医療従事者は職種が言える、
医療従事者と名乗って職種が言えないのはライセンス不要の職種である。
その代表格が尿瓶洗浄係である。
Q.E.D.
546132人目の素数さん
2021/08/01(日) 20:36:40.75ID:YoY6Ouyy
>>544
w/w%でもw/v%でも数値はさほど変わらんなぁ。
液体の比重は全部1として計算しても臨床実地上は問題ないな。
547132人目の素数さん
2021/08/01(日) 20:46:50.36ID:rfYECwDA
>>533
医療従事者という架空の仮定にいつまでこだわるの?
548132人目の素数さん
2021/08/01(日) 20:49:10.30ID:pozt5FU/
>>545
尿瓶尿瓶言ってるから尿瓶なんだよ>>545
そんなこともわからんのか
549132人目の素数さん
2021/08/01(日) 21:05:40.40ID:/M83TGZU
カワイソス
550132人目の素数さん
2021/08/01(日) 21:19:35.59ID:pQRNKHTU
>>545
君に尿瓶って名前がついてるだけだよ
551132人目の素数さん
2021/08/02(月) 05:18:11.55ID:NDs8YHFN
551蓬莱
http://www.551horai.co.jp/
552132人目の素数さん
2021/08/02(月) 08:38:34.32ID:AhPOqdgh
>>545
尿瓶おまる洗浄係であることが判明。
得意技は罵倒と自演認定。
553132人目の素数さん
2021/08/02(月) 08:53:47.16ID:PsIincwr
尿瓶はおまるって呼ばれたいらしいな
554132人目の素数さん
2021/08/02(月) 10:29:09.39ID:xLYxeSkJ
自称医者のキチガイが必死
555132人目の素数さん
2021/08/02(月) 10:56:47.27ID:DPQucyIN
>>552
自分に都合の悪いレスは全員同じに見える病気みたいだな
556132人目の素数さん
2021/08/02(月) 12:07:09.07ID:AhPOqdgh
>540
>544
を計算するプログラムができたので便利になった。
まぁ>522を一般化しただけだけど。
557132人目の素数さん
2021/08/02(月) 12:23:41.81ID:RdAgOQ2+
自称医者は精神病院に行ったほうがいい
症状が急速に悪化してる
558132人目の素数さん
2021/08/02(月) 12:58:26.54ID:DPQucyIN
自称医者の患者w
559132人目の素数さん
2021/08/02(月) 13:10:03.20ID:5zd0r1zX
>>522も結局数字違うんだよな
560132人目の素数さん
2021/08/02(月) 14:20:09.01ID:humQtTeu
線形計画法の典型問題だがもちろん古典的なテーマで死ぬほど研究されてる
そんなレベルから見たらクズみたいなコード組んで喜んでるカス
561132人目の素数さん
2021/08/02(月) 18:16:21.65ID:0KgUonzg
おい、シビン洗浄専門医者
いつまでPC数値解マウントなんて老害行為し続ける積もりだ?
562132人目の素数さん
2021/08/02(月) 20:02:30.56ID:SqfCWbcD
>>497
産めよ増やせよの時代だったんでしょ。女は40過ぎても子供を産んでいた。
563132人目の素数さん
2021/08/02(月) 21:41:53.76ID:zTIe5G2z
sin 1 が0.8より大きいことを
中学生でもわかるくらいの簡単な図形的説明で示せますか?
564132人目の素数さん
2021/08/02(月) 22:58:02.47ID:humQtTeu
そもそもsinもラジアン知らんやろ
565132人目の素数さん
2021/08/02(月) 23:37:34.12ID:LHLoehIF
54°=3π/10=0.9424777... < 1 < π/2 = 1.5707963...
と一辺の長さが2の正五角形の対角線結んでできる底角36°の2:2:1+√5の二等辺三角形見れば
sin54°=(1+√5))/4 = 0.80901699...< sin(1)
とわかるけど
566132人目の素数さん
2021/08/03(火) 00:07:52.15ID:Z2MKa1ZZ
正五角形の辺の比を扱うのが数学Aのなので普通の中学生には難しい
灘中のトップ層とかなら中1で数学3までやってるやつもいるので余裕です
公文式で小学生の間に高校数学やってる人もいるので人によりますね
567132人目の素数さん
2021/08/03(火) 00:25:03.79ID:VnI2FFQH
そっか54度で行けばいいのか
ありがとうございました
568132人目の素数さん
2021/08/03(火) 01:32:48.91ID:51STKeM6
>>566
そうか?
頂角36°の二等辺三角形はお受験頻出やで
569132人目の素数さん
2021/08/03(火) 02:50:21.48ID:IhyGosze
中学生の定義による
中受組の上の方と非中高一貫校では比較できないくらい差がある
平面図形ならチェバの定理とかメネラウスの定理とか普通に使いこなして、高校生の平均よりかなり上の人もいる
質問者が納得してるならそれでいいけど、質問者がおっさんとかおじいさんなのな
570132人目の素数さん
2021/08/03(火) 07:34:06.99ID:db6WSpBA
>>553
新キャラ
「鴟尾 (鵄尾) まる子ちゃん」
でどう?
571132人目の素数さん
2021/08/03(火) 08:03:00.28ID:db6WSpBA
単位円上に A(1, 0) と C(0.6, 0.8) をとり、
B(1, 0.5) とする。
 AB = BC = 0.5
∠AOC = (弧AC) < AB + BC = 1
sin(1) > sin(∠AOC) = 0.8
572132人目の素数さん
2021/08/03(火) 13:55:49.92ID:db6WSpBA
329 に習って…

・n=3
(x, y, z) = (1,0,0) (0,1,0) (0,0,1) 
は辺長 √2 の正三角形、面積 (√3)/2,

・n=4
(w, x, y, z) = (1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)
は直交変換
 p = (w+x-y-z)/2,
 q = (w-x+y-z)/2,
 r = (w-x-y+z)/2,
 s = (w+x+y+z)/2,
すなわち
 w = (p+q+r+s)/2,
 x = (p-q-r+s)/2,
 y = (-p+q-r+s)/2,
 z = (-p-q+r+s)/2,
により三次元空間 s=1/2 内の正四面体に移る。
 (p, q, r) = (1/2,1/2,1/2) (1/2,-1/2,-1/2) (-1/2,1/2,-1/2) (-1/2,-1/2,1/2)
稜長 √2, 体積 1/3,
稜長1の立方体に内接する。
573132人目の素数さん
2021/08/03(火) 14:33:42.59ID:VnI2FFQH
>>571

> (弧AC) < AB + BC

これて明らかですか?
574132人目の素数さん
2021/08/03(火) 15:37:38.47ID:vxOB9ish
〇と×が合わせてn個あってこれらを横に並べる時にどこで区切っても〇の数の方が×の数以上の並べ方って何通りありますか?〇〇×〇××〇×〇〇××〇〇…みたいな感じです
575132人目の素数さん
2021/08/03(火) 16:13:51.82ID:jw5P4wgI
>>574
区切るとは?左右に分ける?
576132人目の素数さん
2021/08/03(火) 16:25:01.68ID:I+haSjrV
左から見ていったときに常に○のカウントが×のカウント以上になるって意味だと思うが難しいな
○×が同数のときが求まればいけそうな気もするが
577132人目の素数さん
2021/08/03(火) 16:28:11.37ID:I+haSjrV
>>573
ABもBCも単位円の接線だから明らかってことにしちゃって良いんじゃないか?
578132人目の素数さん
2021/08/03(火) 16:34:14.57ID:vxOB9ish
>>576
そういう意味です!漸化式立ててみてるんですが偶奇で場合分けしたりで大変で、、
579132人目の素数さん
2021/08/03(火) 16:37:43.16ID:jw5P4wgI
>>578
左だけで良いの?
580571
2021/08/03(火) 17:05:38.86ID:db6WSpBA
>>577
だよねぇ。
tanθ > θ を使えば簡単なんだけど…
581132人目の素数さん
2021/08/03(火) 17:44:46.63ID:51STKeM6
それいつも問題になるやつやな
結局面積とかで逃げなきゃしゃあないやつ
582132人目の素数さん
2021/08/03(火) 19:14:46.45ID:BonGwvaq
任意の三角数が3と互いに素であるということは
必ず9で割って1余るということを意味する。
これは証明できますか?
583132人目の素数さん
2021/08/03(火) 19:17:28.72ID:BonGwvaq
>>582
10,28,55,91
いずれも三角数ですが3と互いに素です。
584132人目の素数さん
2021/08/03(火) 19:21:48.38ID:51STKeM6
n(n-1)/2 ≡ 5(n-5)^2 + 1 ( mod 9 )
( 3, n(n-1)/2 ) = 1 ⇒ n ≡ 2,5,8 ( mod 9 )
585イナ ◆/7jUdUKiSM
2021/08/03(火) 23:23:35.11ID:9sXfJzw3
;;;;;;;;;;;;;;;;;;;;;;;;;しんいちくん、股下0.8mかぁ
;;;;;;;;;;/∩∩ ∩∩ /\;;;;;;;;けっこう大柄なんじゃね?
;;;;;;;;/((^o`-。-))/「;;;;;;;;;;;;;;;;それか脚が長いか。
;;;;;;;/ っц'υ⌒υ/|;;;;;;;;;;;;;;;;;;;;;俺か?
;;;;;‖ ̄UUυυ‖   |;;;;;;;;;;;;;;;;;;;;;;;; 俺は……
;;;;;‖ □ □ ‖ /|;;;;;;;;;;;;;;;;;;;;;;; 78cm
;;;;;‖______‖/ |;;;;;;;;;;;;;;;;;;;;;;;; 風が涼しいぜ。
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖,彡ミ、;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖川` , `; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/U⌒U、 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄ ̄;_~U U~ ;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
>>563>>497
586132人目の素数さん
2021/08/03(火) 23:41:54.56ID:YWiJWhhb
>>497
爺さん19世紀生まれだね。
587132人目の素数さん
2021/08/04(水) 07:41:19.01ID:Ea6UY+yH
n(n-1)/2 が3と互いに素
n, n-1 は3と互いに素
n+1, n-2 は3の倍数
n(n-1)/2 = (n+1)(n-2)/2 + 1 = (9の倍数) + 1,
588132人目の素数さん
2021/08/04(水) 08:32:23.69ID:Ea6UY+yH
S = n(n-1)/2,

S^2・(S-1)
= S^2・(n+1)(n-2)/2
= {n(n-1)(n-2)/2}{(n+1)n(n-1)/2}/2
= (3の倍数)(3の倍数)
= (9の倍数),

S ≠ 0 (mod 3)  ⇒  S ≡ 1 (mod 9)
589132人目の素数さん
2021/08/04(水) 08:59:22.46ID:K0ksWNtw
平成生まれですが
何か質問ありんすか?
590イナ ◆/7jUdUKiSM
2021/08/04(水) 10:40:57.94ID:LzvoFRb9
;;;;;;;;;;;;;;;;;;;;;;;;;お祖父ちゃんとお祖母ちゃんが
;;;;;;;;;;/∩∩ ∩∩ /\;;;;;;;;同じ干支やったとしたら、
;;;;;;;;/((^o`-。-))/「;;;;;;;;;;;;;;;;お祖父ちゃんは明治14年生まれになる。
;;;;;;;/ っц'υ⌒υ/|;;;;;;;;;;;;;;;;;;;;;日本のおもな出来事は、
;;;;;‖ ̄UUυυ‖   |;;;;;;;;;;;;;;;;;;;;;;;;明治生命の誕生。
;;;;;‖ □ □ ‖ /|;;;;;;;;;;;;;;;;;;;;;;;つまり明治生命と
;;;;;‖______‖/ |;;;;;;;;;;;;;;;;;;;;;;;; タメや。
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖,彡ミ、;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖川` , `; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/U⌒U、 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄ ̄;_~U U~ ;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
>>585
>>586
591132人目の素数さん
2021/08/04(水) 10:44:09.70ID:p/SW4APR
イナさんそのAA好きだね
592132人目の素数さん
2021/08/04(水) 17:41:11.49ID:Ea6UY+yH
>>572
稜長1の立方体の8頂点
(w, x, y, z) = (1,0,0,0) (-1/2,1/2,1/2,1/2)
      (0,1,0,0) (1/2,-1/2,1/2,1/2)
      (0,0,1,0) (1/2,1/2,-1/2,1/2)
      (0,0,0,1) (1/2,1/2,1/2,-1/2)

中心
 (p, q, r) = (0,0,0)
 (w, x, y, z) = (1/4,1/4,1/4,1/4)
体積 1
593132人目の素数さん
2021/08/04(水) 18:06:37.38ID:zDrW4TxM
>>589
初めてセックスしたのは何歳の時ですか?
594◆teP1PYzsWc
2021/08/04(水) 19:05:20.64ID:XL7TXpQ4
何でだろう
595132人目の素数さん
2021/08/04(水) 19:10:58.91ID:lh0Rl5R4
>>583
二等辺四角形と言った場合、平行四辺形(長方形)と凧形、等脚台形、二等辺凹四角形を指しますが、任意の2つの内角が等しければ他の2角は自動的に決定されても、辺の長さは決められない(例が等脚台形。厳密にはある操作のみなので範囲で決まる)。

これはどのように説明すれば良いですか?
596132人目の素数さん
2021/08/04(水) 22:39:45.63ID:K0ksWNtw
>>593
セックスってなんですか?
597イナ ◆/7jUdUKiSM
2021/08/04(水) 23:45:18.09ID:LzvoFRb9
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;>>596;;;;;;;;;;;;;
;;;;;;;;;;/∩∩ ∩∩ /\;;;;;;;;(セ)イ・(ッ)゛ォン・ヵ(ク)・(ス)ィン
;;;;;;;;/((^o`-。-))/「;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 生存確信。
;;;;;;;/ っц'υ⌒υ/|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;‖ ̄UUυυ‖   |;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;‖ □ □ ‖ /|;;;;;;;;;;;;;;;;;;;;;;;
;;;;;‖______‖/ |;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖,彡ミ、;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖川` , `; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/U⌒U、 ;;;;;;;;;;;;;;;;;;;;;;∩∩ ;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄ ̄;_~U U~ ;;;;;;;;;;;;;;;;(_ _ )`⌒つ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;∪;;;;;;∪’ ;;;;;;;;;;;;;;;
>>590
598132人目の素数さん
2021/08/05(木) 09:08:48.54ID:eUiwgLlz
>>558
そんなに医師が羨ましいなら再受験すればいいのに。
俺の同期には2割くらいが再受験組だったぞ。
殆ど東大か京大卒だったけど。
599132人目の素数さん
2021/08/05(木) 09:26:53.70ID:h6z0MsEB
>>598
なんで羨ましがられてると思ったの?
600132人目の素数さん
2021/08/05(木) 09:32:35.71ID:cnbxyShW
>>598
えええ!?
医学部ってそんなに再受験いるの?
東大や京大の工学部を出て、三菱重工とかに行くだけでも
じゅうぶんだろうに。(たまに雑用エンジニアで終わる悲しい人もいるけど)

医師免許と医師会のチカラは魅力的か…。
601132人目の素数さん
2021/08/05(木) 09:35:06.32ID:cnbxyShW
>>600
しかもさ、そういうれんじゅうって
研究志望じゃなくて町医者になって
診療所の開業医になるのを目指すんだよな?
(年収2000万くらいの)

日本の知能(というか正確には学力) の高い学生が
町医者に奪われていると思うと勿体ない。
労働市場が歪んでいるよ…。
602132人目の素数さん
2021/08/05(木) 09:37:58.22ID:eUiwgLlz
>>600
俺は二期校時代の入学だけどそれくらいいたよ。
東大数学科卒も歯学部にはいた。
医学部には獣医の免許持ちもいた。
603132人目の素数さん
2021/08/05(木) 09:39:04.69ID:eUiwgLlz
>>601
年収は一桁違うだろな。
604132人目の素数さん
2021/08/05(木) 09:41:25.38ID:eUiwgLlz
理一から再受験で理三の眼科医もいる。
605132人目の素数さん
2021/08/05(木) 09:43:35.94ID:h6z0MsEB
>>604
なんで羨ましがられてると思ったの?
606132人目の素数さん
2021/08/05(木) 10:57:44.49ID:WnvJ+zo/
>>598
だから何?
尿瓶はただの尿瓶じゃん
ここでもゴミ扱いの
607132人目の素数さん
2021/08/05(木) 13:01:29.15ID:IXQoQi7h
>>600
※尿瓶は自分が医者だと思ってる患者です
608132人目の素数さん
2021/08/05(木) 15:28:24.84ID:FVlHQwEC
二期校って何?って思ったから調べてみたら
1978年までの入試制度みたい
ということは、この自称医者は60歳過ぎているって事だよね
プログラムおじさんじゃなくて爺さんじゃん
認知症始まってるのかも
60歳過ぎた爺が高校生のスレで何やってんだろw
609132人目の素数さん
2021/08/05(木) 15:59:05.39ID:h6z0MsEB
家族で旅行とか行けばいいのにな
金あるんだろうし
610132人目の素数さん
2021/08/05(木) 17:02:24.00ID:FVlHQwEC
家族いないんじゃないの?
自称医者だし金もないんでしょ
構って欲しくてこのスレにいるんだろうね
611132人目の素数さん
2021/08/05(木) 18:44:36.36ID:2pnqjOwR
自分のこと医者だと思ってる哀れな患者です
612132人目の素数さん
2021/08/05(木) 19:59:48.00ID:zVY83032
a(a+1)/2=5b+4
を満たす自然数a,bが存在しないことを証明せよ
613132人目の素数さん
2021/08/05(木) 20:10:21.84ID:R8TZtETL
無理
614132人目の素数さん
2021/08/05(木) 21:02:33.93ID:cnbxyShW
>>612
a(a+1) = 10b + 8

右辺 について
10b + 8 は 1桁目が8 である。

左辺 について a(a+1) の1桁目は、
a=1 の時 1x2 = 2
a=2 の時 2x3 = 6
a=3 の時 3x4 = 12
a=4 の時 4x5 = 20
a=5 の時 5x6 = 30
a=6 の時 6x7 = 42
a=7 の時 7x8 = 56
a=8 の時 8x9 = 72
a=9 の時 9x10 = 90
a=10 の時 10x11 = 110、
以後 a = 11 以上についても1桁目の値は同様となる。
つまり、 左辺の 1桁目は 0,2,6 のいずれかとなる。
1桁目が 8 となるような自然数 a の値は存在しない。

よって題意を満たすような自然数a,b は存在しない。
615132人目の素数さん
2021/08/05(木) 21:07:52.76ID:cnbxyShW
汚ねぇ回答だぜ!!
616132人目の素数さん
2021/08/05(木) 21:15:36.71ID:zVY83032
ありがとうございます。三角数を5で割った余りが0,1,3のいずれかになる(一の位が2,4,7,9のいずれかであれば、その時点で三角数でないと断定できる)ことは分かりました。
右辺を5b+4でなく、3b+2とした場合にも解がないことを証明することはできますか?
617132人目の素数さん
2021/08/05(木) 21:20:59.75ID:R8TZtETL
6進数で考えるとか
618132人目の素数さん
2021/08/05(木) 21:27:01.45ID:SDvT8NDT
>>616
言えるでしょ
a(a+1)=6b+4
mod3で考えれば
619132人目の素数さん
2021/08/05(木) 21:46:35.34ID:zVY83032
>>618
そのロジックだと矩形数を6で割った余りは0か2にしかならない、ということになりますが
2 6 12 20 30 42 56 72 90 110
2 0 0 2 0 0 2 0 0 2 実に見事な周期性ですが、
これも証明できるんでしょうか
620132人目の素数さん
2021/08/05(木) 23:39:26.21ID:SDvT8NDT
mod6で考えれば
0*1≡0
1*2≡2
2*3≡0
3*4≡0
4*5≡2
5*0≡0
なんだからそうなるでしょ
621132人目の素数さん
2021/08/06(金) 07:44:45.39ID:fAUSUg3t
>>601
俺は医者じゃないけど、開業医なら3千万円、勤務医なら
その半分くらいらしいよ。これは平均値なので、開業医は
流行れば何億でも儲かるし、下手すると破産するリスクも
ある。勤務医だと安定して1千万~2千万の報酬は得られ
そう。いまどき、これだけの収入が保証される職業はそう
ざらにない。
622132人目の素数さん
2021/08/06(金) 07:54:59.95ID:/dGQVI1C
スレタイも読めない残念なオツムじゃ医者なんか無理無理w
623132人目の素数さん
2021/08/06(金) 07:58:55.04ID:R5GNwoyB
>>621
その資格さえあればどんな変人でもサラリーマン平均の倍くらいは得られるってのは今はもう医師しか無いだろうね
開業医はピンキリだろうけどそれも一般の起業のリスクと比べたらはるかにハードルが低いし、失敗しても勤務医に戻ればいいだけ
収入っていう面では孫さん、三木谷さん、前澤さんみたいなものすごい大富豪になることはないっていう超特殊なことくらいしか劣るところがない
624132人目の素数さん
2021/08/06(金) 13:39:07.54ID:eG2/sJWP
>>583
ある三角数が3と互いに素なら、
それを9で割った商も三角数で、1余る。

(略証)
n(n-1)/2 は3と互いに素
n, n-1 は3と互いに素
n = 3m-1,
n(n-1)/2 = 9・m(m-1)/2 + 1,
625132人目の素数さん
2021/08/06(金) 21:12:49.36ID:+aCbIvh0
n個のスイッチが付いた装置があり、ゲーム開始時は全てONになっている
このスイッチを全てOFFにしたい
・一度OFFにしたスイッチはONにできない
・特定のスイッチのパターンでは、装置が爆発する
・そのパターンはn-1通りあり、ゲーム開始時に印刷され渡される(全てOFFにしたパターンは爆発しない)
この時、どのようなパターンが印刷されても装置を爆発させずにスイッチを全てOFFにできる事を示せ
626132人目の素数さん
2021/08/06(金) 22:15:41.67ID:HYf+gFB+
消す順番として
1→2→3→‥→n-1→n
2→3→4→‥→n→1

n→1→2→‥→n-2→n-1
のn個は最初と最後以外で同一となるものがない
故に禁止されてる状態がn-1個しかなければいずれかひとつは禁止状態を含まない
627132人目の素数さん
2021/08/07(土) 07:09:33.21ID:WYBiIrnW
>>623
医系技官から国境なき医師団とか、色々な分野で働けるのが(・∀・)イイ!!
南極基地まで行った友人もいる。
手先が不器用でも頭が不器用でもライセンスがあればまず職にあぶれることはないだろうな。
沖ノ鳥島で作業員の産業医募集の求人メールが届いたこともあるなぁ。
最近じゃ、ワクチン接種バイトの求人が多い。都の医師会の申し合わせでは日給15万と記載されていたな。
628132人目の素数さん
2021/08/07(土) 07:26:59.05ID:MkjNeQtb
スレタイ読めない自称医者は帰れ
629132人目の素数さん
2021/08/07(土) 07:42:08.66ID:3FzA20Dv
裏表のある、区別がつかないコイン5枚の全ての面を10色で塗るとき、塗り方は何通りあるか
ただし使わない色があっても良いものとする
630132人目の素数さん
2021/08/07(土) 08:14:14.25ID:hFedYn+a
顔文字が本当に気色悪い
631132人目の素数さん
2021/08/07(土) 08:34:50.26ID:RGRd4R20
>>612
>>616
p>5:奇素数のときは
a(a+1)/2 = bp           …  a = cp, cp-1,
a(a+1)/2 = (a-1)(a+2)/2 + 1 = bp+1  …  a = cp+1, cp-2,
a(a+1)/2 = (a-2)(a+3)/2 + 3 = bp+3  …  a = cp+2, cp-3,
a(a+1)/2 = (a-3)(a+4)/2 + 6 = bp+6  …  a = cp+3, cp-4,
∴ bp+2, bp+4, bp+5, …… とならない
632132人目の素数さん
2021/08/07(土) 08:43:34.54ID:Y2dkJfRa
>>627
掲示板でそんな必死にアピールしてる時点でお察しだからなw色々とw
633132人目の素数さん
2021/08/07(土) 09:05:37.15ID:CxrQY1kh
>>629
区別がつかないって、コイン自体が区別つかないし裏表も区別つかないって意味?そうなら:
コイン一枚の塗り方は55通りある
(裏表が異なるのがC(10,2)=45、同じのが10)
それぞれの塗り方のコインの枚数がk1,...,k55ならば
k1+....+k55=10
k1,...,k55>=0
の整数解の個数が答え。整数解の数を求める公式はC(10+55-1,55-1)とか似たような感じだったと思う(「数学 玉 組み合わせ」とかググればこのような公式でてくるんじゃないかな)
634132人目の素数さん
2021/08/07(土) 09:11:10.18ID:CxrQY1kh
>>633
訂正:
k1+...+k55=10 → k1+...+k55=5
C(10+55-1,55-1) → C(5+55-1,55-1)
635132人目の素数さん
2021/08/07(土) 09:18:11.01ID:CxrQY1kh
裏表の区別がつくんだったらコイン一枚の塗り方が55通りから100通りに変わるだけ
636132人目の素数さん
2021/08/07(土) 10:08:49.44ID:y2Sai61O
>>627
60歳超えた爺がコレを書いていると思うと涙が出て来る
他にする事ないの?
スレを荒らすのが生きがいの可哀想な自称医者
637132人目の素数さん
2021/08/07(土) 10:27:29.74ID:L+Aulg7q
>>636
医者じゃなく患者だからなw
638132人目の素数さん
2021/08/07(土) 12:00:26.49ID:hFedYn+a
医者だってのは嘘じゃないような気がするんだよな~
639132人目の素数さん
2021/08/07(土) 12:04:00.58ID:L+Aulg7q
こいつずっと同じこと言ってるから騙りだと思うよ
640132人目の素数さん
2021/08/07(土) 13:02:20.92ID:coR2YkXW
そもそも、医者かどうかなんてここでは何の価値もない
はっきりしてるのは>>627=尿瓶が掲示板で喚くしか能がない哀れな老害だということ
641132人目の素数さん
2021/08/07(土) 13:17:05.84ID:3FzA20Dv
>>633
なるほどー重複組合せの問題にしてしまうんですね
ちなみに裏表の区別があるとして、塗り方のパターン数だけ数えるとどうなるんですかね?
塗り方のパターン数というのは
表裏をAとBで塗ったコインを(A,B)とすると、たとえばコインが3枚の時
{(A,A),(A,B),(B,A)}という塗り方と{(C,C),(C,A),(A,C)}という塗り方を同じ塗り方だと同じだと見なしたときの塗り方の場合の数の事です
642132人目の素数さん
2021/08/07(土) 14:11:55.27ID:KtXSsJ94
医者を羨んでる奴が居るんだなー
643132人目の素数さん
2021/08/07(土) 14:20:47.61ID:A8wX8V2b
尿瓶か?
644132人目の素数さん
2021/08/07(土) 14:47:45.52ID:hFedYn+a
>>640
それはそう
645132人目の素数さん
2021/08/07(土) 15:05:27.88ID:CxrQY1kh
>>641
色の置き換えを区別しない数え方だね
うーん、難しいね
解けなかったけど、やり方として考えてたのは
まずは、コインがn枚、色がk色あるとする
色の置き換えを区別するかつ全色使うパターン数をB(n,k)とする
そうすると、色の置き換えを区別しないかつ全色使わなくてもいいパターン数は
sum_{i=1}^k B(n,i)/P(n,i) だと思う
P(n,k)はn色のうちのk色の置き換え方の数。i個目の項はちょうどi色使ったパターン数を数えてる
でもB(n,k)の出し方がわかんなくて行き止まってる
646132人目の素数さん
2021/08/07(土) 15:23:08.42ID:aZoWbQAx
>>614
自分で書いといて何だけど
すごく地方の国立大の文系っぽい回答でワロスw ( ^ω^)


ち、ちなみに謙虚な神戸大卒TOEIC700です… ( '‘ω‘)
647132人目の素数さん
2021/08/07(土) 15:37:32.04ID:A8wX8V2b
老害尿瓶ジジイみたいになっちゃダメだぞ、高校生の諸君。さもないと社会どころか掲示板でも誰もまともに相手にされなくなるぞ。
648132人目の素数さん
2021/08/07(土) 16:35:54.53ID:3FzA20Dv
>>645
うーん漸化式でも立てられればいいんですけどね…
649132人目の素数さん
2021/08/07(土) 19:20:40.90ID:kY8ztJCX
>>646
やはり、国立大学卒の人は卒業大学が言えるね。
尿瓶おまる洗浄係はどうやらシリツ卒のようだ。
650132人目の素数さん
2021/08/07(土) 19:24:16.15ID:hFedYn+a
尿瓶は学歴透視もできるのか
すごいなあ
651132人目の素数さん
2021/08/07(土) 19:30:30.59ID:joPqW7Ur
>>649
学歴語るスレじゃないので
むしろスレタイ読めないなんて中学生以下だぞ
652132人目の素数さん
2021/08/07(土) 19:43:29.66ID:kY8ztJCX
指折り逐一数えると(嘘)

裏表の区別がつかないとき
[1] 5006386
通り

裏表の区別がつくとき
[1] 91962520
通り
653132人目の素数さん
2021/08/07(土) 19:45:06.84ID:hFedYn+a
高校数学は導く過程が重要なんですよ~
654132人目の素数さん
2021/08/07(土) 20:06:52.75ID:kY8ztJCX
>>650
罵倒厨は医療従事者枠でワクチン接種済といっていたけど、職種を言えないからライセンス不要の職種と考えられる。
よって、尿瓶おまる洗浄係と推測するのには妥当性がある。
655132人目の素数さん
2021/08/07(土) 20:08:27.87ID:joPqW7Ur
あくまで推測なのと同じで学歴もあくまで自称w
656132人目の素数さん
2021/08/07(土) 20:10:55.49ID:kY8ztJCX
>>653
臨床医にはでてくる数値が大切。

トイレットペーパーの製造法を知らなくてもトイレットを使って尻を拭うことができればいい。
経鼻投与のインフルエンザワクチン(フルミスト)の方が分泌型の免疫グロブリンを誘導するから、感染防止効果が理論的には高いはずなのだが
比較試験をすると注射薬の方が優れている。
こういうのが実地臨床の世界である。
657132人目の素数さん
2021/08/07(土) 20:32:33.28ID:klKX9lHx
まぁ学問などコイツには永遠に無理やろ
658132人目の素数さん
2021/08/07(土) 20:35:19.64ID:kY8ztJCX
>>653
いや、高校数学での lim[x->0] sin(x)/x =1 の証明は循環論法で別に導く過程は大事にされていないと思う。
中心極限定理は天下りで覚えるだけ。
659132人目の素数さん
2021/08/07(土) 20:46:59.35ID:joPqW7Ur
尿瓶は帰れ
660132人目の素数さん
2021/08/07(土) 20:48:22.01ID:CxrQY1kh
試験の結果が理論を進展させるひらめきのきっかけになるのと同じように
>>652の答えを因数分解して組み合わせっぽい形に書けば導き方もわかってこないかな
661132人目の素数さん
2021/08/07(土) 20:56:30.11ID:y2Sai61O
>>658
循環論法とかw
アホは黙れ
認知症のジジイは病院に行け
662132人目の素数さん
2021/08/07(土) 21:04:11.81ID:wKkuTsYU
尿瓶のIDワロタ
まさしくKY
663132人目の素数さん
2021/08/07(土) 21:23:28.01ID:hFedYn+a
>>654
もしかして全員がその職域接種した人に見えてるの?

>>656
ここは臨床医スレではないですよ
スレタイ読んでね

>>658
循環論法って具体的にどういうこと?
664132人目の素数さん
2021/08/07(土) 21:49:32.24ID:nQe1Yv39
a_1=1, a_(n+1)=(1/3)a_n + 1/3^n
をみたすa_nの一般交は求められますか?
665132人目の素数さん
2021/08/07(土) 22:02:32.96ID:CxrQY1kh
最初の項をいくつか計算する
a_1=1
a_2=2/3
a_3=3/9
a_4=4/27
...
a_n=n/3^(n-1)
帰納法で証明する
666132人目の素数さん
2021/08/07(土) 22:09:44.11ID:qART2M8P
3^na_nは等差数列
667132人目の素数さん
2021/08/07(土) 22:52:35.94ID:1OYbepLn
>>664
両辺に3^(n+1)をかける
b_n=a_n × 3^nとおくと上の人が書いてくれたように等差数列になる
教科書か学校の問題集に似たような問題があるはず
大抵かけずに割るパターン
668132人目の素数さん
2021/08/07(土) 23:28:42.83ID:tOsAcyla
瓜生のジサマは本当に老害解答しかしないな

老害は更に目上の人に睨まれると押し黙る
669132人目の素数さん
2021/08/07(土) 23:38:01.01ID:yTwlB71G
>>658=老害尿瓶ジジイは世の中にもここにも不要な存在
670132人目の素数さん
2021/08/07(土) 23:44:26.41ID:KtXSsJ94
>>658
高校で中心極限定理やるんか?
671132人目の素数さん
2021/08/07(土) 23:53:40.88ID:3FzA20Dv
>>652
これって色の置換を区別する場合ですよね?
そっちは手計算で求まるので出来れば
>>641
の計算をして欲しいです
672132人目の素数さん
2021/08/08(日) 00:13:55.04ID:IPaDEXdv
>>658こいつ数学と医療用語言いたいだけだろ
高校数学なの、分かる?
スレタイも読めないのか?数学の前に日本語勉強してこい
673132人目の素数さん
2021/08/08(日) 05:55:38.18ID:js6isWOR
>>658
お前、高校の教科書見た事ないだろw
ボケ老人は書き込むなよ
674132人目の素数さん
2021/08/08(日) 05:58:46.92ID:+xA303NW
高校教科書では天下りの公理扱いだね
675132人目の素数さん
2021/08/08(日) 07:27:56.12ID:Ee6DlnyL
>>674
面積を使って挟み撃ちをすると循環論法になる。
676132人目の素数さん
2021/08/08(日) 07:36:28.11ID:js6isWOR
循環論法を回避する方法あるでしょ
677132人目の素数さん
2021/08/08(日) 07:41:18.69ID:L6kjDzM1
ある自然数が多角数でないことを判別するには1の位や剰余が決まった値であれば十分である。これは本当ですか?
平方数や三角数にあてはまることは分かるのですが。
678132人目の素数さん
2021/08/08(日) 08:39:52.26ID:ngiBcsh8
無理に決まってるやん
679132人目の素数さん
2021/08/08(日) 09:26:25.34ID:Mpm5Mj4i
そもそも尿瓶が指摘されたのは「解答までの過程も大事」であって、
それと導出なしで与えられる公式とは何の関係もないわなw
680132人目の素数さん
2021/08/08(日) 10:10:29.85ID:MTaYpgZO
>>670
高校の統計では天下り的に
二項分布の近似を正規分布で計算させるだろ?
681132人目の素数さん
2021/08/08(日) 10:35:15.08ID:ngiBcsh8
どのみち尿瓶中心極限定理なんか意味ないとかアホな事言ってたから尿瓶には関係ない話ではある
682132人目の素数さん
2021/08/08(日) 11:04:16.59ID:HBabw/1p
[例2]    lim[x→0] sin(x)/x = 1.

半径1なる円において弧 2x を張る弦が 2sin(x) である。
 A (cos(x), sin(x))
 B (cos(x), -sin(x))
とおく。(0<x<π/2)
点A,Bにおいて単位円の接線を曳き、その交点をCとおく。
 弧ABの長さは、弧に内接する折線の長さの上限として
定義される(§40)から、折線ACBよりも小である。従って
 1 > sin(x)/x > √{1-sin(x)^2},      (1)
さて 0 < |sin(x)| < |x| から lim[x→0] sin(x) = 0,
故に(1)から標記の関係を得る。

高木貞治:「解析概論」改訂第三版, 岩波書店 (1961)
 §9. [例2] p.21
683132人目の素数さん
2021/08/08(日) 11:56:23.94ID:e8pzrmlE
今の高校の教科書の曲線の長さの定義は∫√(1+(f')^2)dxやけどな
にもかかわらず件の極限の説明が教科書の中で相変わらず扇使ってんのはどうなんって気はする
まぁ説明やからな
684132人目の素数さん
2021/08/08(日) 12:22:56.37ID:fQG1piXl
昔から思ってたけど
関数で y = f(x) = ax + b
あのx軸とy軸の平面グラフって良くないよな。

y という言葉を禁止にして f(x) (略して f) で統一してほしい。
1つのxの値に対して1つのf(x)の値がとれる、
「横軸が入力値で縦軸が出力値ですよ」というのを明確にして混乱しないように。

x,y軸 の平面を出すのは
1つのxにたいしてyが2つ以上出てくるもの、
円の方程式や複素平面からにしてほしい。
685132人目の素数さん
2021/08/08(日) 12:29:13.84ID:fQG1piXl
あと微積分の話になってからは
変数x じゃなくて 変数 t を使ってほしい。f(t) = t^3 のように。
微分したもの、勾配は変化量であり、
これはちょうどある関数tが位置を示す時の「位置と速度」の関係なのだから
微分する変数については t とした方が分かりやすい。

t^3 → 3t^2
e^t → e^t
686132人目の素数さん
2021/08/08(日) 12:30:45.01ID:sK3jiUja
>>684
陰関数てのはxy平面内の曲線で
その特別な場合が1価関数だよ
687132人目の素数さん
2021/08/08(日) 12:37:31.13ID:fQG1piXl
ゆ?
688132人目の素数さん
2021/08/08(日) 12:38:21.65ID:/zj3Ivpk
挟み撃ちの原理ですら俺には自明じゃないな。
鳩ノ巣原理は量子の世界では崩れるらしいし。
689132人目の素数さん
2021/08/08(日) 12:50:25.74ID:ZoxyYlcT
尿瓶は引っ込んでろ
690132人目の素数さん
2021/08/08(日) 13:12:12.06ID:i3oKQY4y
664の問題で 帰納法を使うのと、3^n倍して漸化式説くのと
採点者の受けがいいのはどっっちですか
691132人目の素数さん
2021/08/08(日) 13:17:01.51ID:HInm2wG8
>>690
どっちかの方が受けが良いはずなどと決めてかかる低脳さが、ウケが悪い。
692132人目の素数さん
2021/08/08(日) 13:19:53.01ID:+xA303NW
こんなの10秒で解けなければカス
693132人目の素数さん
2021/08/08(日) 13:35:34.29ID:xP1ixnrs
n(n=1、2、3、……)でaは任意の整数とする。0≦a≦nを満たすとき、ax^2+nx+n=0が実数解をもつ確率で定義される数列a[n]の一般項を求めなさい。
694132人目の素数さん
2021/08/08(日) 13:36:10.90ID:0+LezYUa
>>688
集合Aの濃度がBの濃度より大きいときに写像A->Bは単射でないって原理は量子力学とか関係なしに成り立つ事実じゃない?
695132人目の素数さん
2021/08/08(日) 14:00:25.32ID:/DSwlOWg
というか、濃度の大小の定義にしてもよい圏論的な言明
696132人目の素数さん
2021/08/08(日) 14:00:48.75ID:fQG1piXl
漁師力学とかまったく分からんけど
量子同士がぶつかった時に、そのかけらは量子より小さいの?
あと量子が移動する時の摩擦ってどうなってるの?
質量ゼロだから摩擦無いとかいうトリックか?
697132人目の素数さん
2021/08/08(日) 14:19:22.64ID:+xA303NW
はい、次行ってみよう
698132人目の素数さん
2021/08/08(日) 14:30:50.86ID:/DSwlOWg
>>696
量子のかけらをobservableとして数学的に表現した後に
それを問題にすることができる
というようなことではないか
699132人目の素数さん
2021/08/08(日) 15:06:28.39ID:q+rHvG7U
量子を物質だと思ってるんだ!
何を読んだらそうなるんかね?
700132人目の素数さん
2021/08/08(日) 15:08:32.99ID:+xA303NW
物質だろ。量子でない物質など存在しない。物質でない量子など存在しない。
701132人目の素数さん
2021/08/08(日) 15:08:57.62ID:fQG1piXl
>>699
そうは思っていません。
形がなく質量がゼロのエネルギーの塊?
光の粒子、光子と同じ感じでしょ?
だから質量ゼロで摩擦は発生しない…とか
そういうトリックがあるんでしょ?
702132人目の素数さん
2021/08/08(日) 15:09:21.60ID:fQG1piXl
>>697
(何処へ行くんや…)
703132人目の素数さん
2021/08/08(日) 15:26:15.82ID:/DSwlOWg
>>701
observable はOK?
704132人目の素数さん
2021/08/08(日) 15:41:23.32ID:fQG1piXl
A,B,C のBまでならOKよ。
705132人目の素数さん
2021/08/08(日) 16:01:56.75ID:/DSwlOWg
どこかのキャバ嬢のセリフみたいだな
706132人目の素数さん
2021/08/08(日) 16:57:38.23ID:HBabw/1p
漁師力学と猟師力学を区別することはできない。
なぜなら、
同種りょうしを区別することはできないから。
707132人目の素数さん
2021/08/08(日) 17:30:16.77ID:9hBa8UOs
尿瓶失せろ
708132人目の素数さん
2021/08/08(日) 19:36:23.93ID:HBabw/1p
訂正
同種粒子を区別することはできないから。
709132人目の素数さん
2021/08/08(日) 19:59:56.32ID:JSDX5Gic
センスのかけらもないな
710132人目の素数さん
2021/08/08(日) 22:51:11.26ID:HBabw/1p
きょうは山の日だから猟師の方だろな。
7/22 なら海の日で漁師だろうけど。
711132人目の素数さん
2021/08/08(日) 22:52:41.33ID:rs+frY0K
面白いと思ってんのか?
712132人目の素数さん
2021/08/08(日) 23:07:05.01ID:EUBXHR1w
このスレの年齢層極めて高いのでは?
おじさんどころかおじいさんみたいなセンス
713132人目の素数さん
2021/08/08(日) 23:30:36.08ID:R9i1JNNe
>>641
プログラムができたので
91962520通りをパターンに分類作業中。
メモリ4Gしかないので途中でクラシュするかもしれん。
714132人目の素数さん
2021/08/08(日) 23:42:06.13ID:cASEvIA7
http://blog.livedoor.jp/ddrerizayoi/archives/50775799.html

@YouTube

715132人目の素数さん
2021/08/09(月) 00:54:37.01ID:XHjLuaBx
高校生スレなのに老害スレかよ
尿瓶といい終わってんな
716132人目の素数さん
2021/08/09(月) 05:23:07.25ID:RR0M77Lu
>>688
>挟み撃ちの原理ですら俺には自明じゃないな。
an<bn<cn
lim an=lim cn

lim an=lim bn=lim cn
のこと?
717132人目の素数さん
2021/08/09(月) 06:18:57.92ID:sQnU28eo
>>713
PCに処理させてまま寝たが、9043434終わった時点で151638パターンまで計算終了。
9000万なのでこの十倍くらいはありそう。
718132人目の素数さん
2021/08/09(月) 06:35:58.35ID:Lk9cMcWq
自称医者は60歳過ぎた認知症の爺さん
719132人目の素数さん
2021/08/09(月) 07:23:55.29ID:sQnU28eo
尿瓶おまる洗浄係がまた、内視鏡スレを荒らしだしたが、
内視鏡を使えるライセンスがないので業界ネタを書くことができないのでスルーされているなぁ。
720132人目の素数さん
2021/08/09(月) 07:27:02.18ID:sQnU28eo
>>718
んで、あんたどこ卒?
さては、シリツだな。
721132人目の素数さん
2021/08/09(月) 07:56:02.46ID:RR0M77Lu
>>688
>鳩ノ巣原理は量子の世界では崩れる
1つのものが1つのものに対応するという前提が崩れるだけでしょ?
使えない状況で使おうとしてはいけません
722132人目の素数さん
2021/08/09(月) 08:30:13.42ID:Ij7aJRnT
>>719
尿瓶はなんでこのスレでそれ言い出すの?
723132人目の素数さん
2021/08/09(月) 09:29:57.22ID:oP8ttkZ/
医師板まで出かけて行ってスレ荒らしするのが元祖、尿瓶おまる洗浄係である。シリツ医大スレあらそうとして本人がシリツ卒と露呈して発狂していた。
724132人目の素数さん
2021/08/09(月) 09:36:04.20ID:MNrsMxer
尿瓶はここのスレ荒らしてる分際で何言ってんだか
725132人目の素数さん
2021/08/09(月) 10:05:29.40ID:6CamGJYs
>>723
発狂してるのは6連投してるアンタだよ
尿瓶は本当にブーメラン投げるの好きだな
726132人目の素数さん
2021/08/09(月) 10:54:23.48ID:Fq/5Jiou
>>723
君は本家尿瓶か?
727132人目の素数さん
2021/08/09(月) 12:08:38.92ID:bamx/qJK
(1)  Σ[n=2,∞] 1/n^3 < 1/4,  (阪大)
(2)  Σ[n=3,∞] 1/n^5 < 1/96,
(k)  Σ[n=k+1,∞] 1/n^(2k+1) < 1/{(2k)(2k)!}
おながいします
728132人目の素数さん
2021/08/09(月) 12:17:40.30ID:9v9VeVPi
いやです
729132人目の素数さん
2021/08/09(月) 12:33:36.35ID:iO2XYJm2
尿瓶兼ブーメランを投げるなウリュウ爺
730132人目の素数さん
2021/08/09(月) 13:34:27.13ID:GrIG3IAP
こいつら団体で荒らしてんのか
731132人目の素数さん
2021/08/09(月) 13:35:49.98ID:Lk9cMcWq
>>720
還暦過ぎた爺さんが他人の学歴を気にするとか笑える
未だに学歴コンプ抱えてるんだな

スレタイくらい読めるようになったらどうなの?

孫の年代の高校生にバカにされている気分はどうですか?
732132人目の素数さん
2021/08/09(月) 13:42:50.79ID:IMolM5wW
>>727
Σ[n=k+1,∞] 1/n^(2k+1)
<1/2×1/(k+1)^(2k+1) + ∫[k+1,∞]1/x^(k+1)dx
= 1/2×(2k+3)/(k+1)^(2k+1)
>(k+1/2)^(2k) ×1/2×(2k+3)/(k+1)

1/{(2k)(2k)!}
>1/(2k+1)!
>e^(2k)/(2k+1)^(2k+1) (∵ Stirling )
=(e/2)^(2k)(k+1/2)^(2k)/(2k+1)

(e/2)^(2x) > (2x+3)(2x+1)/(2(x+1)) holds for x≧4

1/2×(2+3)/(1+1)^(2+1) - 1/2/2! = -11/64
1/2×(4+3)/(2+1)^(3+1) - 1/4/4! = -617/69984
1/2×(6+3)/(3+1)^(2k+1) - 1/6/6! = - 15169/70778880

https://www.wolframalpha.com/input/?i=%28e%2F2%29%5E%282x%29%3D%282x%2B3%29%282x%2B1%29%2F2%2F%28x%2B1%29&;lang=ja
733132人目の素数さん
2021/08/09(月) 14:03:17.17ID:IMolM5wW
>>732
k=1,2,3の時計算間違い
k≧4はコレで正しい
734132人目の素数さん
2021/08/09(月) 15:37:05.19ID:bamx/qJK
>>732
下に凸より
Σ[n=k+1,∞] 1/n^(2k+1) < ∫[k+1/2, ∞] 1/x^(2k+1) dx
  = [ -1/(2k・x^(2k)) ](x=k+1/2,∞)
  = 1/{2k・(k+1/2)^(2k)}
  < 1/{2k・[k(k+1)]^k}
  < 1/{2k・(2k)!},         (*)
ですか。おみごと。

*)
k(k+1) - i(2k+1-i) = (k-i)(k-i+1) ≧ 0,
(2k)! = Π[i=1,k] i(2k+1-i) ≦ Π[i=1,k] k(k+1) = [k(k+1)]^k,
735132人目の素数さん
2021/08/09(月) 15:54:21.40ID:bamx/qJK
ちなみに 想定解は
 n^(2k+1) = n(nn)(nn)・・・・(nn)
  > n(nn-1)(nn-4)・・・・・(nn-kk)
  = (n-k)・・・・(n-2)(n-1)n(n+1)(n+2)・・・・(n+k)
より
 1/n^(2k+1) < 1/[(n-k)・・・n・・・(n+k)]
   = (1/2k){1/[(n-k)・・n・・(n+k-1)] - 1/[(n-k+1)・・n・・(n+k)]},
n=k+1 ~ ∞ でたす。


@YouTube

22:05
鈴木貫太郎
736132人目の素数さん
2021/08/09(月) 15:55:06.39ID:IMolM5wW
そもそも一行目間違ってる

Σ[n=k+1,∞] 1/n^(2k+1)
<1/2×1/(k+1)^(2k+1) + ∫[k+1,∞]1/x^(2k+1)dx
= 1/2×(2k+3)/(k+1)^(2k+1) + 1/(2k)/(k+1)^(2k)
= (2k+1)/(2k(k+1)^(2k+1))

1/{(2k)(2k)!}
> (2k+1)/(2k)/(2k+1)!
> (2k+1)/(2k)e^(2k)/(2k+1)^(2k+3/2)
= (2k+1)/(2k) (e/2)^(2k)/(k+1/2)^(2k)/(2k+1)^(3/2)

1/((k+1)^(2k+1) < (e/2)^(2k)/(k+1/2)^(2k)/(2k+1)^(3/2)
⇔(e/2)^(2k) > (2k+1)^(3/2)/(k+1) holds for k ≧ 3

1/2^3+1/3^3+‥>1/2^3/2+1/2^2/2=3/16<1/4
1/3^5/2+1/3^4/3+..>1/3^5/2+1/3^4/3=1/162<1/96
737132人目の素数さん
2021/08/09(月) 15:56:26.31ID:IMolM5wW
かぶった
まぁいいや
738132人目の素数さん
2021/08/09(月) 17:09:27.14ID:4he9/rNm
>>696
かけらとか摩擦とかは多体系で現れる現象であって量子効果とは程遠い物理だわ
739132人目の素数さん
2021/08/09(月) 19:26:30.43ID:GrIG3IAP
>>701
プランク定数の単位は知ってる?
740132人目の素数さん
2021/08/09(月) 20:07:11.50ID:bamx/qJK
>>735
ついでながら
 n^(2k) = (nn)(nn) ・・・・ (nn)
  > (nn - 1/4)(nn - 9/4) ・・・・ (nn - (k-1/2)^2)
  = (n-k+1/2)・・・・(n-1/2)(n+1/2)・・・・(n+k-1/2)
より
 1/n^(2k) < 1/[(n-k+1/2)・・・・(n-1/2)(n+1/2)・・・・(n+k-1/2)]
  = (1/(2k-1)){1/[1/[(n-k+1/2)・・・・(n+k-3/2)] - 1/[(n-k+3/2)・・・・(n+k-1/2)]}
n=k ~ ∞ でたすと
 Σ[n=k,∞] 1/n^(2k) < 1/{(2k-1)(1/2)(3/2)・・・・(2k-3/2)}
  < 2/{√(2k-1)・(2k-1)!}
ここで
 i+1/2 > √(i(i+1))   (i=1 ~ 2k-2)
を使った。
741132人目の素数さん
2021/08/09(月) 20:20:12.23ID:bamx/qJK
>>739
 ジュール・秒

(大意)
SI補助単位って数値と単位がゴチャ混ぜぢゃね?
 キロ、メガ、ギガ、テラ、ペタ、…
 ミリ、マイクロ、ナノ、ピコ、フェムト、…
こんなの使うんだったら、単位統一の意味ないだろ。
742132人目の素数さん
2021/08/09(月) 21:28:49.46ID:ZGgREyE7
>>738
いや摩擦は量子トライボロジーって分野があるぐらいで惑星レベルから量子レベルまで起きる普遍的な現象だったりする
743132人目の素数さん
2021/08/09(月) 21:44:53.33ID:ii9tIlli
無知ですまんが、教えてくだしゃい
有限体 F_{p^m} を構成するには
F_p[X]/(f(X))
f(X) は F_p 上 m次monic 既約多項式
ですかね それとも、
f(X) は F_{p^m}の原始多項式ですかね
既約多項式で割って何かいいことがありますか?
744132人目の素数さん
2021/08/09(月) 22:10:57.58ID:rr2mw6J4
既約多項式じゃないと剰余環が整域にならないから、体への道が遠くてちょっと悲しい
745132人目の素数さん
2021/08/09(月) 22:27:43.53ID:BEqysbsm
F_p^mを構成するためのF_p上のm次既約多項式を与えるのは難しいやろな
ネットで検索するとそういうm次多項式を探索するためのライブラリが転がってる
explicitな表示は見つかってないんじゃなかろうか?
746132人目の素数さん
2021/08/09(月) 22:41:20.69ID:ii9tIlli
どうも回答ありがとうございます
原始多項式も規約多項式だと思うんですがね
F_{q} 上の monic な n 次既約多項式の数は q=p^m として、
1/n*Σ_{d|n} μ(d)*q^(n/d)
で、F_{p^m} の原始根(原始元=乗法群(巡回群)の生成元)を根に持つ最小多項式で
φ(p^m-1)/m 個存在するんですね
F_{p^m) を構成するならば、原始多項式で割った方がいいのではないかと
既約多項式だと有限体の位数がp^mとは限らず、p^d (d|m) のものが出てきてしまうのではないかと
心配しているのです。
747132人目の素数さん
2021/08/09(月) 22:52:43.07ID:ii9tIlli
>>774 様、ご回答ありがとうございます。
原始多項式は、aを原始根とすると
f(x-a)(x-a^2)...(x-a^{p^(m-1)})
となるようです。これはm次多項式で
原始根は φ(p*m-1)個、原始多項式はφ(p^m-1)/m個
だから辻褄は合います。
幽玄隊は F_p 上の m 次元ベクトル空間とみなせますから、
規定の取り方として、多項式規定 {1,a,a^2,...a^m-1}
正規規定{a,a^p,a^{p^2},...,a^{p^(m-1)} などととれるらしいです。
基底の取り方の総数は
(q^m-q)(q^m-q^2)...(q^m-q*(m-1))
こあるらしいです。F_q 上の一般戦型群の元の個数に似てますね
k次元部分空間の基底の総数はまあいいですね。
748132人目の素数さん
2021/08/09(月) 23:08:19.84ID:BEqysbsm
そりゃそれでもちろん既約多項式にはなるけど、それを展開した時の係数が何になるかを計算するアルゴリズムが大変じゃないの?
つまりaをF_p%mの乗法群の生成元としてi乗和
t1(a)=a+a^^p+a^(p^2)+‥、
t2(a)=a^2+a^(2p)+‥
が全部決定できれば係数もニュートンの漸化式で決定できるけどこのt1(a),t2(a),‥を決定するのが難しい
例えばF_3^5の原始多項式の係数c1〜c5はなんですかと言われて計算する方法ある?
749132人目の素数さん
2021/08/09(月) 23:21:36.39ID:ii9tIlli
すみません(誤字多すぎですね)
そういうアルゴリズムは知りません
既約多項式ならBerlekamp のアルゴリズムというのがあるらしいですが、申し訳ない
750132人目の素数さん
2021/08/09(月) 23:37:04.44ID:bamx/qJK
>>732
そのまま積分近似すれば 誤差20%以下に収まるんですよね。
小生は tele-scoping の準備段階で荒っぽい近似をしたので
桁外れな結果になりました。。。
751132人目の素数さん
2021/08/09(月) 23:41:21.99ID:ii9tIlli
>> 700
何をもって物質と言っているのかわかりませんが
photon は量子ですか、物質ですか?
752132人目の素数さん
2021/08/10(火) 00:19:01.49ID:In9lUs11
高校数学
753132人目の素数さん
2021/08/10(火) 00:37:35.66ID:cVGrZCJn
どんどん話脱線しちゃうんだから…
754132人目の素数さん
2021/08/10(火) 01:20:42.33ID:TRiXqean
もはや質問スレとして機能していないな
755132人目の素数さん
2021/08/10(火) 01:21:31.26ID:In9lUs11
群論とか解析学とかマタギ力学とか
高校数学の範囲を越えた話はやめろ。

ドラゴボの本スレで
「ドラゴンボール超」の話をするくらいみっともない、
マナー違反
756132人目の素数さん
2021/08/10(火) 07:44:45.26ID:p6366u7S
>>755
>マタギ力学

すべってるぞ
757132人目の素数さん
2021/08/10(火) 09:05:12.16ID:YViJ7GMn
某スレで尿瓶発狂中www
758132人目の素数さん
2021/08/10(火) 13:39:11.30ID:6PRkEJ/V
>>741
それがエネルギーの単位でない事は分かる?
759132人目の素数さん
2021/08/10(火) 13:43:23.66ID:klWMsaBo
君わかるの?えらいね
760132人目の素数さん
2021/08/10(火) 14:07:06.87ID:NT0Vwzno
へっへっへっへ
761132人目の素数さん
2021/08/10(火) 15:39:29.43ID:cVGrZCJn
高校数学はどこへ
762132人目の素数さん
2021/08/10(火) 15:49:15.07ID:NT0Vwzno
高校生になるまでに Hartshorne は終わらせておいてくださいね
763132人目の素数さん
2021/08/10(火) 17:03:39.85ID:6PRkEJ/V
>>759
単位の区別がつかない奴を初めてみた!
764132人目の素数さん
2021/08/10(火) 19:00:43.31ID:pX5xROSb
百トン力 は エネルギーだよね。


@YouTube

03:50
快獣ブースカ OP
765132人目の素数さん
2021/08/10(火) 20:39:33.97ID:mdyHhLlC
>>727邪道な別解を思いついたので
(1)(骨子:与式左辺について初項1/8なので等比級数
1/8 + 1/16 + 1/32 + ・・・ → 1/4 を利用してみる。一方の与式左辺は
1/8 + 1/27 + 1/64 + ・・・)
証明:先に補題①
(n+1)^k - n^k > n^k (ただしk>=n>=2)
を証明しておくと、二項定理より
左辺 > Combination(k, 1) * n^(k-1) >= n^k
より示された。補題①より、
k>=n>=2 の範囲で、常に(n+1)^k / n^k > 2であることがわかる。
よってn=2の時n^3 = 2^(n+1)であることから再帰的にn>=3においてn^3 > 2^(n+1)が成り立つ。以上まとめると
与式左辺 = Σ[n=2,∞](1/n^3) < Σ[n=2,∞](1/2^(n+1)) = 1/4
(2)初項は1/243であり、本問においても補題①を満たすので、与式左辺 < 2/243 < 1/96
(k)同じように証明したい。すなわち初項が1/(k+1)^(2k+1)なので
2/{(k+1)^(2k+1)} < 1/{(2k)(2k)!}を示せばよい。右辺を変形すれば
2/{(4k/(2k+1))*(2k+1)!}であり、また(4k)/(2k+1) < 2であるから、k>=3について
{(k+1)^(2k+1)} > 2 * (2k+1)!を示せば(1)、(2)と合わせて題意は示されたことになる。
(k+1)^(2k+1) = {(k+1)^2} * {(k+1)^2} * ・・・ * {(k+1)^2} * (k+1)・・・②
(2k+1)! = (k+1-k) * ・・・* (k+1-1) * (k+1) * (k+1+1) * ・・・(k+1+k)
= {(k+1)^2-k^2} * ・・・ * {(k+1)^2-1^2} * (k+1)・・・③
②と③の各項を比較すると、③のすべての項について対応する②の項より大きいものはない。また{(k+1)^2}と{(k+1)^2-k^2}を比較すると
{(k+1)^2-k^2} / {(k+1)^2} = {2k+1} / {k^2+2k+1}はk>=3で単調減少する(証明略)が、k=3を代入すれば7/16となり、これは1/2より小さい。したがって
k>=3について② > ③ * 2が示され、以上により題意は示された。

なんか知らんけど最後までうまくいったw
766132人目の素数さん
2021/08/11(水) 05:55:41.02ID:GkRekpyv
>>765
補題から完全にミスってます。100年ROMります。お騒がせして本当すんまそんm(__)m
767132人目の素数さん
2021/08/11(水) 18:45:42.78ID:I3kEVYtX
>>764
いるんだなー
768132人目の素数さん
2021/08/12(木) 11:41:27.39ID:MUfOFrdD
すみません。黄チャートの問題ですがx²+(a-3)x-2a+2の因数分解で-2とa-1でやろうとして
(x+2){x-(a-1)}としたんですが展開すると元の式にもどりません。どこが間違っているのでしょうか
769132人目の素数さん
2021/08/12(木) 12:04:28.55ID:pvLUH3R/
-2*(a-1) は -2a+2 になるから良いけど, -2 + (a-1) は -(a-3) にならないからダメ
因数分解の公式
x^2 - (a + b)x + ab = (x-a)(x-b)
において, xの係数は a+b じゃなくて -(a+b) だから注意
770132人目の素数さん
2021/08/12(木) 12:11:21.98ID:MUfOFrdD
>>769
ありがとうございますm(_ _)m
771132人目の素数さん
2021/08/12(木) 12:23:08.12ID:alKU+K8p
-2とa-1でやるってことは(x+a)(x+b)=x^2+(a+b)x+abを使うってことだろ
-が出てきたために(x-a)(x-b)=x^2-(a+b)+abと混同したか、あるいは因数定理と混同したか
772132人目の素数さん
2021/08/12(木) 23:59:21.05ID:ACpVWvcH
例のクソジジイ消えたか
773132人目の素数さん
2021/08/13(金) 08:06:02.56ID:mN7x9WcH
>>757
尿瓶おまる洗浄係がシリツ卒であることが発覚して発狂中(現在進行形w)
「んで、あんたどこ卒?」に答えらないまま。
シリツ医大卒の医師が卒業大学を隠すのはよくあるんだが、尿瓶おまる洗浄係が卒業大学を言えないのは意外だったな。
774132人目の素数さん
2021/08/13(金) 08:11:39.48ID:mN7x9WcH
医学部再受援で国立→国立、国立→私立、私立→私立の医師は知っているけど
私立→国立の医師は寡聞にして存在を知らないな。
尾身茂医師が私立から自治医大というのは知っているが。
775132人目の素数さん
2021/08/13(金) 08:13:06.37ID:mN7x9WcH
理一から理三
医科歯科から理三
という医師もいる。
776132人目の素数さん
2021/08/13(金) 08:21:18.44ID:21I51uMW
>>774-775
どうせ町医者になるだけなら
どっちでも良さそうだけどねぇ。

何か違うの?
総合病院の勤務で出世をして
院長を目指す…とか?
777132人目の素数さん
2021/08/13(金) 08:29:37.48ID:EmRkJiOc
スレ違いが理解出来ないやつは心療内科・精神科へいけ
778132人目の素数さん
2021/08/13(金) 08:31:17.79ID:kSHY/67O
相変わらずスレタイの読めない尿瓶
小学校出てれば読めそうだが・・・?
779132人目の素数さん
2021/08/13(金) 09:05:13.89ID:22QdY7Hr
自称医者のキチガイ
まだいたのか
780132人目の素数さん
2021/08/13(金) 09:06:31.81ID:LA9y6nTJ
>>775
スレタイも読めないんじゃ小学生以下だぞ
781132人目の素数さん
2021/08/13(金) 10:34:17.13ID:wK4CH9Cq
>>776
なんかヒエラルキーがあれば登りたいという、受験競争的
心理が抜けないのかねぇ。名誉欲に近い欲望なのかもしれん。
782132人目の素数さん
2021/08/14(土) 00:18:26.16ID:RCyD/2GT
>>775=尿瓶はまだ他人の学歴の話してるのか?
スレタイ読めないんじゃ小学生以下だぞ
783132人目の素数さん
2021/08/14(土) 13:26:12.03ID:aTx9ee5v
>>590
イナさんの爺さんは日清戦争も日露戦争も経験しているんだろうな。
784132人目の素数さん
2021/08/14(土) 14:57:57.40ID:G/QEKGs+
>>776
底辺シリツ卒の医師は卒業大学を隠す人が多いぞ。
岡山の医科大学を卒業しとか、金沢の医科大学を卒業し との自己紹介で誤認を狙っている。
785132人目の素数さん
2021/08/14(土) 15:17:30.03ID://oMAPxu
【ほしのあすかちゃん 無茶苦茶可愛い!!!】 ■■ https://imgur.com/a/bxbOGL9 ■■
※彼女、現在34歳になりましたが今も可愛さは衰えておりません。

【星野飛鳥・ほしのあすか・星野明日香 合計490枚!!大奉仕!!!】
■■ お宝画像リンク → ■■ https://imgur.com/a/UIJzo0b ■■

※こちら(→)も是非読んであげてください。 ■■ http://archive.is/HwUrc ■■
※あすかちゃん、応援してくれる人はいっぱいいるよ!頑張れ!

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
※まずはYouTubeの「あすちゃんねる」に登録してあげてね。
■■ https://www.youtube.com/channel/UC0A_V8oHMBRNbjFew9-u9xQ/featured ■■
※毎週日曜日の18:00~18:30頃開始(約2時間)のライブ(生)配信中です!
※是非チャットに参加してあげてください!!!
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

【おまけコーナー(+α)】
【橋本ありな画像集172枚大量アップ この子も可愛すぎる!!】
「橋本ありな」ファンの皆様、今日はとっても嬉しいお宝画像を大量にお届けします。
彼女のファンの皆様に大量奉仕いたします。ごゆっくりとご覧ください。
■■ https://imgur.com/a/9u9bs87 ■■ ←すごく可愛いのにおっぱいやパンティを惜しげもなく披露してくれています。

【ブルマ好きのお兄さんたち、大変お待たせしました???】
※ブルマ姿の素人の女の子たちの画像を大量アップさせていただきました。
※ブルマを穿いたプロの女の子たちの画像約300枚 その①
■■ https://imgur.com/a/kOcr1WO ■■
※ブルマを穿いた素人の女の子たちの画像558枚
■■ https://imgur.com/a/TR3mDpr ■■
いやぁ、ブルマ姿の女の子って、本当にいいもんですね。
※今夜はブルマ姿の女の子たちを遅くまでごゆっくりとご鑑賞ください。

じゃ、またね。
786132人目の素数さん
2021/08/14(土) 16:45:18.68ID:lIiK8d84
a(a+1)+7
これが何を意味するかわかる人いますか?
787132人目の素数さん
2021/08/14(土) 17:03:37.84ID:hwojnyd8
尿瓶まだいたのか
788132人目の素数さん
2021/08/14(土) 17:08:52.36ID:hwojnyd8
尿瓶はプログラムどころか期待値も分かってないぞw
789132人目の素数さん
2021/08/15(日) 01:41:50.89ID:TFV3LDyU
点は未定義らしいですがその方が数学の発展に良い?って何故でしょうか?

点は.だって定義しても良さそうな気がするんですが、、、。
790132人目の素数さん
2021/08/15(日) 02:17:26.13ID:sZsUS6kF
量なき量という幽玄の極み故。
791132人目の素数さん
2021/08/15(日) 02:21:50.89ID:sZsUS6kF
ギリシャ人はインドより先に 無(zero) を認識していたのか,
はたまた、インドのzero を聞き知って点の定義に真理を見出したのか?
792132人目の素数さん
2021/08/15(日) 07:08:25.20ID:GwPAdGr2
尿瓶失せろ
793132人目の素数さん
2021/08/15(日) 10:24:39.56ID:3GlZVFc0
空手踊りってしゅしゅっと言いながら目力でキメたらいいですか?
794132人目の素数さん
2021/08/15(日) 15:14:23.26ID:kOU6zudd
C.Caratheodory (1873/09/13~1950/02/02) ギリシャの数学者 (測度論)
 熱力学の原理を提唱したことで有名
(参考書)
 原島 鮮:「熱力学・統計力学」改訂版, 培風館 (1978)
 340p.4070円
795132人目の素数さん
2021/08/15(日) 17:04:52.90ID:kOU6zudd
>>764
100トンなら「ある女性」1人分と「ある動物」1匹分の合計になるという。
それぞれの重さはいくら?
796132人目の素数さん
2021/08/15(日) 17:07:44.01ID:kOU6zudd
こたえ
「ある女性」 90トン   (自由の女神像)
「ある動物」 10トン   (シャチ)

http://www.itmedia.co.jp/bizid/articles/0702/28/news082.html
797132人目の素数さん
2021/08/15(日) 17:52:04.14ID:fF5UwYIL
>>795-796
それよぅ、数学+常識の問題から外れたクイズ問題に成ってるじゃねぇか。ふざけてんじゃねぇよ。
798132人目の素数さん
2021/08/16(月) 06:38:34.09ID:p7tZnj8k
s,t は0かそれ以上の整数である
このときz は
     z = 170s + 120t >= 4000
次に、 d は z と 4000 の差である
    d = z - 4000

この時 d を最小にするようなs,t の値を求めよ

↑ これを解きたいんですが高校の知識で解けますか?
799132人目の素数さん
2021/08/16(月) 06:56:32.12ID:24zmEOBi
(s,t) = (8,22) (20,5) のとき z=4000, d=0
だよ
800132人目の素数さん
2021/08/16(月) 07:57:41.21ID:p7tZnj8k
>>799
ありがとうございます。
どうやったんですか?
勘で数値を代入して探り当てたんですか?
(計算機を使わずに)
4000 を 7,654,300 のような大きい数字に置き換えたとして
手計算で解けますか?
801132人目の素数さん
2021/08/16(月) 09:18:48.57ID:3lMnU1nx
ヨコ
一次不定方程式やん
まさに受験数学で最頻出テーマ
これくらいはできんと受験失敗するよ
802132人目の素数さん
2021/08/16(月) 09:30:09.29ID:p7tZnj8k
ありがとう。
二元の1次不定方程式の例題で解けました。
803132人目の素数さん
2021/08/16(月) 12:44:56.43ID:iHViMpq4
お願いします

A×5=100

(A×0.7)×B×5=100

この時のBの求め方を教えてください
804132人目の素数さん
2021/08/16(月) 14:41:16.87ID:24zmEOBi
(A×5) × (B×0.7)
 = (A×5) × (0.7×B)
 = ((A×5)×0.7) × B
 = (A×(5×0.7)) × B
 = (A×(0.7×5)) × B
 = ((A×0.7)×5) × B
 = (A×0.7) × (5×B)
 = (A×0.7) × (B×5) = 100,  (← 第二式)
これと第一式から
 B × 0.7 = 1,
 B = 1/0.7
805799
2021/08/16(月) 14:46:19.52ID:24zmEOBi
>>800
亀レスすまそ。
(s,t) = (2, 63783) (14, 63766) …… (45002, 33) (45014, 16)
のとき z=7654300, d=0 だよ。
806132人目の素数さん
2021/08/16(月) 16:01:36.09ID:qWQb4oAo
>>804
無駄な式多過ぎw
807132人目の素数さん
2021/08/16(月) 16:04:54.54ID:/2O2crHx
無駄な式はなさげだけど何行目?
808132人目の素数さん
2021/08/16(月) 18:33:53.11ID:gMC9e1Rr
1行目から無駄じゃねえか?
2つ目の式に1つ目の式を代入して解くだけだろう
809132人目の素数さん
2021/08/16(月) 18:39:55.38ID:24zmEOBi
st-平面で考える。
直線 z = 170s + 120t 上には (120/g, -170/g) = (12, -17) ごとに格子点が1つある。
間隔 √(120^2+170^2) /g ただし g = gcd(170,120) = 10,

直線上の2点 (1, (z-170)/120) と ((z-120)/170, 1) の距離は {(z-170-120)/(170・120)}√(120^2+170^2) 
この中に格子点があるための十分条件は
 z - 170 - 120 ≧ 170・120/g = L = lcm(170,120) = 2040,
 z ≧ L + 170 + 120 = 2330,
810132人目の素数さん
2021/08/17(火) 00:46:56.35ID:vvvO0oW7
nを3以上の整数とする。この時、平面上のn角形はn-3本の対角線を引いて、n-2個の三角形に分割する方法は何通りあるか?

マスターオブ場合の数に載ってる解答のやり方についての説明をお願いします
どのような発想をしてあのようなやり方になるのか
あれでなぜうまくいくことが保証されるのか?
よろしくお願いします
811132人目の素数さん
2021/08/17(火) 05:03:36.70ID:tyaGK7jY
>>804 の説明
    乗法 (×) の演算規則
1→2    交換法則
2→3→4   結合法則
4→5    交換法則
5→6→7   結合法則
7→8    交換法則
8→9    単位元
9→10    逆元の存在
812132人目の素数さん
2021/08/17(火) 07:49:50.37ID:WYFjvhLR
無駄w
813132人目の素数さん
2021/08/17(火) 19:27:48.55ID:1gSEkvPH
乗法の交換法則を用いることで証明ができる等式問題はありますか?
814132人目の素数さん
2021/08/17(火) 19:54:15.30ID:ViSjloSX
 1+1=1+1
815132人目の素数さん
2021/08/17(火) 23:10:35.06ID:nIFUTbao
a[n+1}=(1/2)a[n] + 1/n , a[1]=1
を満たす数列の一般項は求められるすますか
816132人目の素数さん
2021/08/17(火) 23:20:16.97ID:7IwYtr5S
>>809
これって合ってるのかな。

1変数2元の不定方程式 というよりも
このやり方だと
多変数関数 z(s,t) = 170s + 120t に見える。

グラフにすると z は 直線じゃなくて面になるんじゃないの?
817132人目の素数さん
2021/08/18(水) 00:29:25.57ID:pEGGj4j0
 170s + 120t = z (定数)
は直線の方程式ですね。

あと、
直線上の切片 (0, z/120) と (z/170, 0) の距離は {z/(170・120)}√(120^2+170^2)
この中に格子点があるための十分条件は
 z ≧ 170・120/g + g = L + g = 2040 + 10 = 2050,
とすべきかも…
818132人目の素数さん
2021/08/18(水) 00:33:05.69ID:pEGGj4j0
ただし、定数z は g=10 の倍数に限ります。
819132人目の素数さん
2021/08/18(水) 00:52:57.16ID:55U5iI4J
非負整数x,yでax+byと表示できない最大の数は(a-1)(b-1)-1
昔平成教育委員会でピーターフランクルが即答してみんな驚いてたな
820132人目の素数さん
2021/08/18(水) 01:02:07.38ID:G1jF34KU
>>819
Googleかどこかの就職試験で出そう (小並感)
821132人目の素数さん
2021/08/18(水) 01:53:09.67ID:X6+79CeH
知ってただけだろう
これが種数2の代数多様体の特異点の分類に重要な意味を持っているとは驚きだ
822132人目の素数さん
2021/08/18(水) 10:58:43.05ID:OFnJ9hmH
解き方のとっかかりだけでも教えていただけたら。。

無作為に1からN(自然数)までの自然数を2個選び、小さい方(等しい場合も含む)をminとする。
例えば、8と65が選ばれたならばminは8。
(1)minの期待値をNを用いてあらわせ。
(2)Nが十分大きいとき、Nとminの比は1/3となることを示せ。
823132人目の素数さん
2021/08/18(水) 11:03:26.28ID:8j4jymWA
min=nとなるのは、nとn+1~Nまでのうちの1つが選ばれるとき
824132人目の素数さん
2021/08/18(水) 11:03:58.15ID:DtMQPgSg
P(min≧k)=(N-k+1)^2/N^2
E(min)=ΣP(min≧1)=1/(6N^2)N((N+1)(2N+1)
825132人目の素数さん
2021/08/18(水) 11:05:36.75ID:DtMQPgSg
>>824
×E(min)=ΣP(min≧1)=1/(6N^2)N((N+1)(2N+1)
◯E(min)=ΣP(min≧k)=1/(6N^2)N((N+1)(2N+1)
826132人目の素数さん
2021/08/18(水) 12:02:58.21ID:G1jF34KU
>>822
2個を選んた時の min. の期待値と max. の期待値は
それぞれが 数直線上の 1~N の区間を (2+1) = 3等分 する
それぞれの点と等しい。

従って
min.の期待値は1+ {(N-1)/3},
max. の期待値は 1+2* {(N-1)/3}

Nが十分に大きい時
Lim {N-->∞} (min.)
= Lim {N-->∞} (1+ (N-1)/3)
= Lim {N-->∞} (N/3 + 2/3) = N/3
827132人目の素数さん
2021/08/18(水) 12:04:32.04ID:5jnGL943
>>823-825
min=kとなる場合の数を求めて和を求める感じですかね。計算してみます。ありがとうございました!
828132人目の素数さん
2021/08/18(水) 13:26:22.57ID:loCyznKF
minの期待値は
(N+1)/3
にならないか?
829132人目の素数さん
2021/08/18(水) 13:33:31.30ID:loCyznKF
>>828
すまん
等しい場合があるのね
830イナ ◆/7jUdUKiSM
2021/08/18(水) 18:34:12.20ID:rR9n/e9z
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;>>783;;;;;;;;;;;;;
;;;;;;;;;;/∩∩ ∩∩ /\;;;;;;;;日清戦争は十三歳の夏に起きた。
;;;;;;;;/((^o`-。-))/「;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 日露戦争は二十三歳の冬だ。
;;;;;;;/ っц'υ⌒υ/|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;一度目の結婚をする前じゃなかったかなぁ?
;;;;;‖ ̄UUυυ‖   |;;;;;;;;;;;;;;;;;;;;;;;; >>803
;;;;;‖ □ □ ‖ /|;;;;;;;;;;;;;;;;;;;;;;; 計算したら負け。
;;;;;‖______‖/ |;;;;;;;;;;;;;;;;;;;;;;;; 二つの式をよく見てみ。
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;; 0.7B=1が浮きあがっただろ。
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;; B=10/7
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;; =
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖,彡ミ、;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖川` , `; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/U⌒U、 ;;;;;;;;;;;;;;;;;;;;;;∩∩ ;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄ ̄;_~U U~ ;;;;;;;;;;;;;;;;(_ _ )`⌒つ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;∪;;;;;;∪’ ;;;;;;;;;;;;;;;
>>597
831132人目の素数さん
2021/08/18(水) 19:00:34.74ID:pEGGj4j0
>>819
 a,b は2以上で互いに素な自然数ですね。

>>825
E(min) = Σ[k=1,N] k・P(min=k)
 = Σ[k=1,N] k{P(min≧k) - P(min≧k+1)}
 = Σ[k=1,N] P(min≧k)
 = (1/N^2)Σ[k=1,N] (N+1-k)^2
 = (1/N^2)Σ[k'=1,N] (k')^2
 = (1/N^2) N(N+1)(2N+1)/6,

ここで P(min≧N+1) = 0 とした。
832132人目の素数さん
2021/08/18(水) 19:37:07.13ID:pEGGj4j0
min=k ということは、N枚の正方形
 (1,1) ~ (N,N)
 (2,2) ~ (N,N)
  …
 (N-1,N-1) ~ (N,N)
 (N,N)
のうち、初めのk枚にカヴァーされる
つまり
 (1,1) ~ (N,N)
 (2,2) ~ (N,N)
  …
 (k,k) ~ (N,N)
にカヴァーされる。
833132人目の素数さん
2021/08/19(木) 11:08:12.91ID:g3Jy0Bpa
>>826
あら、これって回答として駄目か…

「求める期待値は
始点1から終点Nまでの線分において
各点が等距離に配置される」っていうのが自明でないよな。

ぜったい真実だけど。
834132人目の素数さん
2021/08/19(木) 11:23:52.07ID:1jwhuYAd
>>833
> あら、これって回答として駄目か…

ダメに決まってるやろ…
835132人目の素数さん
2021/08/19(木) 11:27:50.55ID:1+hbE7LQ
n=2ですでにズレてる
https://ideone.com/ASeqg5
836132人目の素数さん
2021/08/19(木) 11:32:55.98ID:g3Jy0Bpa
ぴえん ( ';ω;)
837132人目の素数さん
2021/08/19(木) 13:06:18.82ID:U1Uh1X8K
>>830
イナさんは博士号取得する予定ですか?
838132人目の素数さん
2021/08/19(木) 22:11:26.50ID:LyzaJSp3
1から9の9個から異なる2個を選んで順列を作る
この時適当な数に対して各桁に1ずつを9回加えて、それを1つのグループとする
(例 47→58→69→71→82→93→14→25→36,ただし9の次は1としている。)
この時、9P2個の順列が上記のような適当なグループを考えることにより、互いに背反なグループが8個できることを証明せよ
また9C2であったとしても互いに背反なグループに分けられるのかどうか?答えよ
839イナ ◆/7jUdUKiSM
2021/08/19(木) 22:32:30.59ID:4nqrMFA6
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;>>837;;;;;;;;;;
;;;;;;;;;;/∩∩ ∩∩ /\;;;;;;;;そういやキルビル観たなぁ。
;;;;;;;;/((^o`-。-))/「;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;/ っц'υ⌒υ/|;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;‖ ̄UUυυ‖   |;;;;;;;;;;;;;;;;;;;;;;;; 博士号?
;;;;;‖ □ □ ‖ /|;;;;;;;;;;;;;;;;;;;;;;;
;;;;;‖______‖/ |;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;なんの
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;; ために?
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;; 年内は
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;; ABCDE
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;; の計劃。
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖ /|;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/ |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄‖  |;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
□ □ □  ‖,彡ミ、;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖川` , `; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
_____‖/U⌒U、 ;;;;;;;;;;;;;;;;∩∩ ;;;;;;;;;;;;
 ̄ ̄ ̄ ̄ ̄ ̄;_~U U~ ;;;;;;;;;;(_ _ )`⌒つ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;∪;;;;;∪’ ;;;;;;;;;;;;;;;
>>830
840132人目の素数さん
2021/08/19(木) 22:47:04.71ID:+DJGzLaS
>>838
12,13,14,‥,18
で始まる8グループに分ければ良い
Cは12,13,14,15
から始まる4グループに分ければ良い

何コレ?
841132人目の素数さん
2021/08/19(木) 22:47:39.91ID:R1OCCZ29
『|x|>0 の範囲の実数 x で定義された関数 f(x) は、
 第三次導関数を持ち、常に、

 f(x) + f(-x) = 0
 0 < 2&middot;{f ''(x)}^2 < f '(x)&middot;f '''(x)

 を満たすとする。このとき、

 [ⅰ]

 「関数 f(x) の極限において、

  lim[x→±0]{f(x)} = f(0)

  が成り立つとき、f(0) の値を求めよ。」

 次に、数列{a【n】}を

 a【n+1】= a【n】- f(a【n】)/f '(a【n】) (n = 1,2,&middot;&middot;&middot;)
 a【1】≠0

 と定義する。このとき、

 [ⅱ]

 「[ⅰ]の場合において、次の命題、

  f(x)&middot;f ''(x)≦M&middot;{f '(x)}^2 ⇒ lim[n→∞]{a【n】}≠0

  が正しくなるような定数 M が存在することを示し、
  その範囲の M の最大値を求めよ。        」』

解法をご教示ください。よろしくお願いいたします。m(_ _)m
842132人目の素数さん
2021/08/19(木) 22:51:10.77ID:R1OCCZ29
『|x|>0 の範囲の実数 x で定義された関数 f(x) は、
 第三次導関数を持ち、常に、

 f(x) + f(-x) = 0
 0 < 2・{f ''(x)}^2 < f '(x)・f '''(x)

 を満たすとする。このとき、

 [ⅰ]

 「関数 f(x) の極限において、

  lim[x→±0]{f(x)} = f(0)

  が成り立つとき、f(0) の値を求めよ。」

 次に、数列{a【n】}を

 a【n+1】= a【n】- f(a【n】)/f '(a【n】) (n = 1,2,・・・)
 a【1】≠0

 と定義する。このとき、

 [ⅱ]

 「[ⅰ]の場合において、次の命題、

  f(x)・f ''(x)≦M・{f '(x)}^2 ⇒ lim[n→∞]{a【n】}≠0

  が正しくなるような定数 M が存在することを示し、
  その範囲の M の最大値を求めよ。        」』

解法をご教示ください。よろしくお願いいたします。m(_ _)m
843132人目の素数さん
2021/08/19(木) 23:25:45.54ID:KjKjNWbj
>>838
2個の '順列' を (a,b) と記せば、
mod(b-a,9) (≠0) で8組に分類したんぢゃね?
844132人目の素数さん
2021/08/19(木) 23:32:23.22ID:+DJGzLaS
なんか問題おかしくないか?
(1)はそもそも定義域にx=0入ってないのにf(0)とかあるし
百歩譲ってf(0)は定義されててそこで連続ではあるけどそこでは微分可能でもないし不等式も成り立たないという意味にとるにしても、だとしたら連続奇関数だからf(0)は0しかあり得ないのは自明やし
なにそれ?
845132人目の素数さん
2021/08/20(金) 00:53:06.70ID:t8lGMkPw
>>838
(後半)
(a,b) と (b,a) を同一視すれば
{±1}, {±2}, {±3}, {±4} の4グループになるかな。
846132人目の素数さん
2021/08/20(金) 06:43:11.72ID:PvMf/rJG
>>844
二つの極限値 lim[x→+0]{f(x)} 、 lim[x→-0]{f(x)} の関係が、

lim[x→+0]{f(x)} = lim[x→-0]{f(x)}

の場合は、その値を f(0) と定義すると、って意味じゃね?
847132人目の素数さん
2021/08/20(金) 09:33:20.73ID:55E9AQLX
問題文中では f(0) は f(x)|x=0 とは全く無縁の、ある有限確定値じゃないかな
別にaでもAでも良いんだろうけど、わざと紛らわしくして嫌がらせでもしたかったのかも
848132人目の素数さん
2021/08/20(金) 09:40:07.23ID:HsGTPo0k
まぁしかしどのみちx=0まで連続に伸びる奇関数ならf(0)=0なんか自明だしなぁ
849132人目の素数さん
2021/08/20(金) 16:09:08.87ID:e10XHx9e
1から13の13枚のカードから異なる3枚を選んでカードを並べる
この時適当な数に対して各桁に1ずつを13回加えて、それを1つのグループとする
(例 1,2,3→2,3,4→3,4,5→4,5,6→5,6,7→6,7,8→7,8,9→8,9,10→9,10,11→10,11,12→11,12,13→12,13,1→13,1,2、ただし13の次は1としている。)
この時、13P3個の順列が上記のような適当なグループを考えることにより、互いに背反なグループに分けることができるか?分けられるならいくつのグループに分けられるか
また13C3であったとしても互いに背反なグループに分けられるのか?分けれるとしたらいくつのグループに分かれるのか?
850132人目の素数さん
2021/08/20(金) 20:48:30.08ID:e10XHx9e
>>840
12,13,14,‥,18
で始まる8グループに分ければ良い
Cは12,13,14,15
から始まる4グループに分ければ良い

これは私も自分で導けたのですが、自分でもどういう理屈でこれが成り立つのかがうまく説明できないんです
説明お願いします
851132人目の素数さん
2021/08/20(金) 22:37:34.47ID:e10XHx9e
>>850
自己解決しました
852132人目の素数さん
2021/08/20(金) 22:49:01.53ID:e10XHx9e
解答では

1から9の9個から異なる2個を選んで順列を作る
この時適当な数に対して各桁に1ずつを9回加えて、それを1つのグループとする
(例 47→58→69→71→82→93→14→25→36,ただし9の次は1としている。)

9P2個の2桁の整数は9P2÷9=8個のグループに排反に分けられます。
と書いてあるのですが、何を根拠に上のグループ例から9P2÷9した8が排反であると言えるのでしょうか?
感覚的には分かるのですが、論理的にいうとどうなるのでしょうか?
853132人目の素数さん
2021/08/20(金) 23:14:40.96ID:ZgBTI52q
15枚のカードから異なる5枚を選ぶとき
順列で
[24024,] 1 15 14 13 12
グループに

組み合わせで
[201,] 1 4 7 10 13
グループに
分けられる。

ひたすら数えさせただけ。
854132人目の素数さん
2021/08/20(金) 23:34:53.32ID:e10XHx9e
>>853
[24024,]
[201,]というのは何のことでしょうか?
855132人目の素数さん
2021/08/21(土) 00:09:02.16ID:MteiabTd
>>853
尿瓶チンパンは引っ込んでろ
帰れ
856132人目の素数さん
2021/08/21(土) 06:07:39.05ID:JrG3CfN7
f(x) = sin(x) * 3x の微分について

辺の長さが sin(x) と 3x となるような長方形を描く。
その増分を df として面積の増分を見ると…

df = sin(x)・d(3x) + 3x・dsin(x) + d(3x)・dsin(x)

両辺を dx で割ると

df/dx = sin(x)・d(3x)/dx + 3x・dsin(x)/dx + d(3x)・d(sin(x))/dx
= sin(x) 3 + 3x・cos(x) + d(3x)・d(sin(x))/dx

右辺の d(3x)・d(sin(x))/dx がゼロになって消えてくれれば
キレイに df/dx が求まるんだけれど…消えてくれない…。
これ、 d(3x)・d(sin(x))) は微小量の2つの合成数なので ゼロにしたらアカンかな?
857132人目の素数さん
2021/08/21(土) 06:17:17.29ID:JrG3CfN7
合成された数…というか
合成された関数の微分なので
その合成関数の微分のやり方で作業的に解くと

f(x) = sin(x)・3x
について
df/dx = 3sin(x) + 3x・cos(x)
となるんだろうけどさ。

それを分かりやすく >>856 の説明でやろうとしたんやけど、
右辺の3項目の d(3x)d(sin(x)) が消えてくれないから
そこで止まってしまうんよな…。
858132人目の素数さん
2021/08/21(土) 06:26:36.63ID:0n+ow+se
>>854
グループに番号をつけて列挙した最後の番号。
859132人目の素数さん
2021/08/21(土) 06:29:03.39ID:TOr7YhgS
そんな infinitesimal なこと言われても…
860132人目の素数さん
2021/08/21(土) 07:08:03.22ID:Jgsuv08l
>>853
13個の数字から選ぶ数字の個数をnとして13Cnのグループの数を数える。
> data.frame(n=n,group=gc)
n group
1 1 1
2 2 6
3 3 22
4 4 55
5 5 99
6 6 132
7 7 132
8 8 99
9 9 55
10 10 22
11 11 6
12 12 1
13 13 1
861132人目の素数さん
2021/08/21(土) 07:12:12.69ID:Jgsuv08l
ワクチン接種をすませた医療従事者と言っていたので職種を聞いてが答えない。
言うのが恥ずかしいライセンス不要の仕事であろう
∴尿瓶おまる洗浄係と認定。
卒業大学を聞いても答えない。
言うのが恥ずかしい大学卒であろう。
∴シリツ卒と認定

場合の数を計算するのにPCを使うのは尻を拭うのにトイレットペーパーを使うようなもの。
尿瓶おまる洗浄係は素手で拭くのを好むようだ。
さては尿瓶おまるも素手で洗浄していうのではないかと思われるw
862132人目の素数さん
2021/08/21(土) 07:15:53.25ID:Jgsuv08l
>>855
プログラムでのエレファントな解に対して、あんたが素手でエレガントな解を出せばいいだけ。
863132人目の素数さん
2021/08/21(土) 07:18:55.47ID:Jgsuv08l
>>860
出力の行番号で見づらいので再掲
> data.frame(group=gc)
group
1 1
2 6
3 22
4 55
5 99
6 132
7 132
8 99
9 55
10 22
11 6
12 1
13 1

別スレでHaskellに数えさせていた人もいたけどn=3で22で同じ数字だったので
多分、重複や数え落としはないと思う。
864132人目の素数さん
2021/08/21(土) 08:40:32.78ID:4gnKYA3o
>>861
尿瓶よく読めな

尿瓶によると
「道具があれば使うのが文明人。」
らしいので、マラソンに自動車で参加するのが尿瓶の言うところの文明人ということだろ?
我々が言っているのは、
「ここは数学板だよ、臨床の話したけれ別スレ行ってね」
ということであって、道具を使うなとは一言も言っていない
865132人目の素数さん
2021/08/21(土) 09:03:46.90ID:JrG3CfN7
誰か >>856 に答えてクレメンザ
866132人目の素数さん
2021/08/21(土) 09:30:15.01ID:hfozKHWK
>>863=尿瓶はスレタイ読めないチンパン
867843
2021/08/21(土) 09:35:42.29ID:TOr7YhgS
>>852
同じグループに属する9個の (a,b) は、mod(b-a, 9) が同じです。
この値(1,2,…,8) と8個のグループは 1:1 に対応しています。
∴ 複数のグループに属することはできません。
868132人目の素数さん
2021/08/21(土) 10:57:04.27ID:JwUsTew4
道具の開発をしたり応用したりするためにも道具を理解しよう

に対して、

別な道具を使ったらこうなりました
正しく道具を使ってるか理解出来ません

ってゴミそのもの
869132人目の素数さん
2021/08/21(土) 11:02:48.98ID:c7We4cZW
>>864
マラソンだと思っているのが尿瓶おまる洗浄係。
俺の勤務先は内視鏡はブラッシングも自動化されていて効率もいいし感染制御にも役立つ。未だに手洗いでブラッシングの施設も多い。

尿瓶おまる洗浄係は素手で洗っているのか?
尻を拭うにはトイレットペーパーを使う。
おまる洗浄係は素手で拭くのかよ?
870132人目の素数さん
2021/08/21(土) 11:14:52.42ID:9sW+ZqxY
>>869
マラソン大会に自動車で参加して勝ち誇ってるのが尿瓶チンパンだって言ってるだろ
日本語読めるか?
871132人目の素数さん
2021/08/21(土) 12:48:46.73ID:BjbbOECC
なんでこのスレに医者がいるんだ?
このスレの皆様は医者には一ミリもなりたくなかったみたいだよ?
872132人目の素数さん
2021/08/21(土) 12:53:08.05ID:JrG3CfN7
オカモト 0.1mm くらいは医者になりたかったよ、
俺はね ( '゜ω゜)
873132人目の素数さん
2021/08/21(土) 12:53:15.61ID:4gnKYA3o
>>869
お前以外はマラソンだと思ってるよ尿瓶さん
だからお前こんなに嫌われてるんだよ?
この書き込みの後半読む限り、>>864も読めてないみたいだけど、いずれにしろ早く医者板に帰ってくれない?
874132人目の素数さん
2021/08/21(土) 13:27:02.58ID:BUZPrMsv
>>873
スレタイはおろか日本語も読めないのが>>869=尿瓶
自分のこと医者だと思ってるのも>>869=尿瓶だけ
875132人目の素数さん
2021/08/21(土) 14:46:33.31ID:Ca+e5vDb
2乗すると、
桁のどこかに 0123456789 あるいは 1234567890 が連続して現れるような数はありますか?
876132人目の素数さん
2021/08/21(土) 15:12:19.55ID:Aqj3FXA7
1111111
877132人目の素数さん
2021/08/21(土) 16:41:50.64ID:BjbbOECC
>>872
ずいぶん分厚いコンドームだね。
878132人目の素数さん
2021/08/21(土) 16:44:15.30ID:BjbbOECC
>>839
イナさん高校数学で博士号が欲しいって言ってなかった?
879132人目の素数さん
2021/08/21(土) 19:12:51.11ID:TOr7YhgS
 111 111 111 ^2 = 12345678987654321
       = 1.2345678987654321・10^16    >>876
を利用して
 111 111 110 61 ^2 = 123456789009876545721,
 111 111 110 65 ^2 = 123456789098765434225,
 (10^18 + 111111111) ^2 = 10^36 + 2・111111111・10^18
        + 012345678987654321,
880875
2021/08/21(土) 22:15:34.58ID:Ca+e5vDb
>>879さん すごいです。
881879
2021/08/21(土) 23:22:19.69ID:TOr7YhgS
小さいもの
351 364 183 ^2 = 123456789095257489,

大きいもの
(10^21 + 11 111 111 065)^2
 = 10^42 + 2 222 222 213・10^22
 + 0123456789098765434225,
882132人目の素数さん
2021/08/21(土) 23:36:27.74ID:TOr7YhgS
N = 10^23 として
(N + 11 111 111 061)^2
 = N^2 + 22 222 222 122 N + 00123456789009876545721,

N はアヴォガドロ数ぐらいの桁数www
883132人目の素数さん
2021/08/22(日) 00:01:05.90ID:LjwJOpkK
1000円で買ったものを1500円で売ると500円の利益が生じる
これは今までの経験則からはわかるのですが、利益が生じることが理解できなくなりました
1000円消失しているのに、500円だけ買ってくるのだから損しているとしか思えません
自分の頭がおかしくなったのはわかってます
脳の血管詰まってたりするのでしょうか?
884132人目の素数さん
2021/08/22(日) 00:08:02.48ID:LjwJOpkK
>>883
すいません実際のお金使ったら理解できました
1000円で買って1500円で売ると、1000円と500円が返ってくるから利益出てますね
数字のみで考えてて1000円が返ってくるというところが抜けてました
885132人目の素数さん
2021/08/22(日) 01:03:07.60ID:jhxXHPwP
>>874
医師が羨ましいのか。
まあ、現状では最強の国家資格であるとは思うが。
886132人目の素数さん
2021/08/22(日) 01:03:25.68ID:jhxXHPwP
>>874
医師が羨ましいのか。
まあ、現状では最強の国家資格であるとは思うが。
887132人目の素数さん
2021/08/22(日) 04:54:00.86ID:ykdboFqQ
「人の為に生活して己のために生活せざるを医業の本体とす」
  扶氏医戒之略 12箇条 (扶氏經驗遺訓の巻末にある)
  緒方洪庵が翻訳・出版
888132人目の素数さん
2021/08/22(日) 07:57:54.41ID:5wGz3bSO
>>885-886
結局最後は「医者である自分は羨ましがられてるんだ」って妄想で自分を慰めて終わり
尿瓶はなんか別のことできないの?
889132人目の素数さん
2021/08/22(日) 08:41:32.60ID:el4Nm42x
>>886
自分のこと医者だと思ってる哀れな患者だと思ってるよw
890132人目の素数さん
2021/08/22(日) 10:33:32.18ID:8V0v+Erx
自惚れ依存症だな場違いプログラム気違いは
891132人目の素数さん
2021/08/22(日) 11:01:32.50ID:jhxXHPwP
俺は朝鮮人を羨ましいとは思わないから朝鮮人の証拠を出せないとは言わない。
尿瓶おまる洗浄係も羨ましくないから尿瓶おまる洗浄係の証拠を出せとは言わないよ。
892132人目の素数さん
2021/08/22(日) 11:11:15.98ID:zYoo83aS
>>891
羨ましくなくても「俺朝鮮人」って連呼してたら「ちょっと朝鮮語しゃべってみて」ってなるぞ
893132人目の素数さん
2021/08/22(日) 11:25:06.29ID:qFnvp0rU
また自称医者のキチガイが出て来たのか
894132人目の素数さん
2021/08/22(日) 12:36:47.08ID:rhKpQMAC
タモリなら「ゴスミダ」付けるな
895132人目の素数さん
2021/08/22(日) 20:03:03.67ID:PS1rSjs7
875に便乗して

任意に与えられた数字の順列に対し、
その順列が桁のどこかに現れるような平方数は存在しますか?
896132人目の素数さん
2021/08/22(日) 20:56:47.90ID:55L7kBE0
「任意に与えられた数字の順列」として、例えば
1234567890123456789
が指定されたなら、その1/2にあたる
617283945061728394.5
を使って、
(100000000000000000006172839450617283945)^2
=10000000000000000001234567890123456789038103946883097091875476299968754763025
897132人目の素数さん
2021/08/23(月) 01:59:54.11ID:CWNASMRf
>>892
尿瓶は引っ込んでろ
898132人目の素数さん
2021/08/23(月) 04:36:10.44ID:t/6KeOXk
35136418288201442531^2 = 1234567890123456789004459392949295685961
もある
899132人目の素数さん
2021/08/23(月) 04:51:23.11ID:t/6KeOXk
11111111061111110994 ^2 = 123456789012345678909876554920987668036
もある
900132人目の素数さん
2021/08/24(火) 10:06:16.22ID:1EfupkSk
>>897
尿瓶おまる洗浄係が医師板の内視鏡スレで尿瓶を連呼して荒らしているけど、
よほど尿瓶が好きなんだなぁ、まあ、日常業務として尿瓶を扱っているから当然かもしれん。

俺は内視鏡検査が好きだから内視鏡ネタを連呼しているけどね。
http://2chb.net/r/hosp/1625605940/
901132人目の素数さん
2021/08/24(火) 10:09:20.62ID:1EfupkSk
>>892
まあ、その程度だろな。わざわざパスポート見せろとか言わんだろ。
俺は大学時代の講義の話とか書いた。
内視鏡スレでは業界ネタを投稿している。
塩ビの防護服を丸めて手袋にいれてコンパクトにした画像とかアップした。

尿瓶おまる洗浄係が医師板の内視鏡スレで尿瓶を連呼して荒らしているけど、
よほど尿瓶が好きなんだなぁ、まあ、日常業務として尿瓶を扱っているから当然かもしれん。
俺は内視鏡検査が好きだから内視鏡ネタを連呼しているけどね。
http://2chb.net/r/hosp/1625605940/
902132人目の素数さん
2021/08/24(火) 10:11:49.54ID:1EfupkSk
正解のない医師国試問題
高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚
出題者にp値と危険率の区別がついていない。
903132人目の素数さん
2021/08/24(火) 10:29:51.97ID:TfBkyK3L
またキチガイの自称医者が出て来たのか
偽医者は消えろよカス
904132人目の素数さん
2021/08/24(火) 10:46:04.54ID:Opp0/5DC
>>901
証拠見せろってことだけど?
905132人目の素数さん
2021/08/24(火) 10:46:25.71ID:Opp0/5DC
尿瓶はマジでスレタイ読んでくれ
906132人目の素数さん
2021/08/24(火) 11:01:21.93ID:uf3NSzwq
>>902
スレタイ読めない尿瓶は引っ込んでろ
907132人目の素数さん
2021/08/24(火) 11:09:02.60ID:lAMKuVFo
1. Lim [h-->0] (12*h) = 12 * 0 = 0

2. Lim [h-->12] (12*h) = 12 * 12 = 144

3. Lim [h-->12] (12*h^2) = 12 * (12*12) = 1728

a を0より大きい実数とする。

A1. Lim [h-->0] (a * h) = a * 0 = 0
A2. Lim [h-->0] (h * h * h) = 0

↑ これ、全部有っていますか?
特に式 A1 と A2 について。
908132人目の素数さん
2021/08/24(火) 11:10:15.46ID:lAMKuVFo
合っていますか。
909132人目の素数さん
2021/08/24(火) 14:14:07.23ID:lAMKuVFo
ぴえん ( ' *ω;)
910イナ ◆/7jUdUKiSM
2021/08/26(木) 10:20:49.20ID:yVyskPYx
>>839
>>786
a(a+1)+7=a^2+a+7
=(a+1/2)^2+7-1/4
=(a+1/2)^2+27/4
≧27/4=6.75
∴a=-1/2のとき最小値6.75をとることを意味する。
911132人目の素数さん
2021/08/27(金) 23:36:18.70ID:c8Pj/Dd2
任意の奇数2a+1とおく
2a+1+2(2a+1)より小さいすべての奇数は2a+1と互いに素となることを証明せよ
912132人目の素数さん
2021/08/27(金) 23:41:54.96ID:c8Pj/Dd2
2a+1<2b+1<2a+1+2(a+1)が成り立つとき、
aとbは互いに素である、とも言えるわけですが
913132人目の素数さん
2021/08/27(金) 23:45:19.38ID:c8Pj/Dd2
> 2a+1<2b+1<2a+1+2(a+1)が成り立つとき、
> aとbは互いに素である、とも言えるわけですが
すみません訂正です
> 2a+1<2b+1<2a+1+2(a+1)が成り立つとき、
2a+1<2b+1<2a+1+2(2a+1)が成り立つとき、
914132人目の素数さん
2021/08/28(土) 00:11:49.12ID:s6WwhVri

>>911 >>913 の反例をそれぞれ見つけよ
915132人目の素数さん
2021/08/28(土) 05:10:06.17ID:9To/b/0q
君達 IQ は低いんだろう? 
916132人目の素数さん
2021/08/28(土) 06:24:58.89ID:5nuw37wl
70くらいでしゅ ( ^ω^)
917132人目の素数さん
2021/08/28(土) 08:51:55.27ID:iujiKEC3
2a+1が合成数のとき
その約数を考える。
918132人目の素数さん
2021/08/28(土) 09:35:47.19ID:5nuw37wl
1. df = 3dx
両辺をdx で割って → df/dx = 3

2. df = dx * dx * dx
→ df/dx = dx * dx = 0

1と2 について
この式の展開って合っていますか?
dx * dx がいまいち自信ない
919132人目の素数さん
2021/08/28(土) 09:55:54.31ID:5H2ZwFkg
わからないんですね
920132人目の素数さん
2021/08/28(土) 10:41:17.35ID:EjbIlurx
>>918
3dx≠dx * dx * dx
921132人目の素数さん
2021/08/28(土) 11:50:29.75ID:5nuw37wl
>>920
あ、ごめんなさい。
1と2はまったく関係ない別の問題です。

df(x)/dx = dx * dx * dx = 0
この 右辺 dxの3乗 は 0 でいいのか、
イコールでつないでええんかな。

別のアプローチで、 dx を1/n と表現すると…
Lim[n-->∞] (1/n)^3 = 0
これは明らかに0となりますよね。
となると dx * dx * dx = 0 も 大丈夫?
922132人目の素数さん
2021/08/28(土) 12:30:19.05ID:mJhXN2f+
>>916
問題 IQ70は偏差値いくつに相当するか計算せよ。
923132人目の素数さん
2021/08/28(土) 12:43:33.99ID:mJhXN2f+
>>922
# IQを偏差値に変換する
IQ2hensa <- function(IQ) qnorm(pnorm(IQ,100,15),50,10)
curve(IQ2hensa(x),-200,200,bty='l',xlab='IQ',ylab='hensa',type='p',col=2)
IQ=-200:200
hensa=IQ2hensa(IQ)
lm=lm(hensa~IQ)
abline(lm)
summary(lm)
924132人目の素数さん
2021/08/28(土) 13:54:54.78ID:a1YDNltg
IQ70は尿瓶>>902だろ
てかチンパンだから測定不能かw
人間様に失礼だったな
925132人目の素数さん
2021/08/28(土) 15:25:10.43ID:ExfHaBfA
age
926132人目の素数さん
2021/08/28(土) 17:34:51.95ID:dbpBMMlz
数列{a_n}に対して、数列{b_n}が、
 b_k = (a_1+a_2+…+a_k)/k k=1,2,3,…
で定まってます。
このとき{a_n}が等差数列なことと{b_n}が等差数列なことは同値になりますか?
927132人目の素数さん
2021/08/28(土) 19:50:35.52ID:ImXfxAHx
>>926
同値になる
{a_n}:等差数列→{b_n}:等差数列を示すには一般項a_n=a+(n-1)dをb_nに代入すればok
{a_n}:等差数列←{b_n}:等差数列を示すにはb_(k+1)-b_k=dと置いてb_nの定義を代入すればok
928132人目の素数さん
2021/08/28(土) 20:50:30.94ID:iujiKEC3
{a_n} が等差数列のとき
 b_k = (a_1 + a_k)/2,
929132人目の素数さん
2021/08/28(土) 21:13:17.09ID:iujiKEC3
{b_n} が等差数列のとき
b_{k+1} - 2b_k + b_{k-1} = 0,
a_{k+1} - a_k = ((k+1)b_{k+1} - k・b_k) - (k・b_k - (k-1)b_{k-1})
 = b_{k+1} - b_{k-1} + k(b_{k+1} - 2b_k + b_{k-1})
 = b_{k+1} - b_{k-1}
 = 2d,
930132人目の素数さん
2021/08/28(土) 22:14:59.12ID:dbpBMMlz
ほおほうなるほど
931132人目の素数さん
2021/08/28(土) 23:03:50.87ID:bBUjmyYI
>>910
イナさん。ブログの収入月どのくらいありますか?
932132人目の素数さん
2021/08/28(土) 23:09:48.24ID:5nuw37wl
>>931
1ヶ月で DaiGoの年収くらい
933132人目の素数さん
2021/08/29(日) 07:55:03.05ID:w9iA4LgR
>>924
偏差値いくつに相当するか計算できないの?

尿瓶おまる洗浄係が医師板の内視鏡スレで尿瓶を連呼して荒らしているけど、
よほど尿瓶が好きなんだなぁ、まあ、日常業務として尿瓶を扱っているから当然かもしれん。

俺は内視鏡検査が好きだから内視鏡ネタを連呼しているけどね。
http://2chb.net/r/hosp/1625605940/
934132人目の素数さん
2021/08/29(日) 08:21:32.83ID:6jX/svy/
また出たよ
自称医者のキチガイが
935132人目の素数さん
2021/08/29(日) 08:41:18.67ID:IE+7JlSE
なんで尿瓶は別の板の話ここでしてるの?
936132人目の素数さん
2021/08/29(日) 11:23:09.27ID:f4bhHa9W
>>933
スレタイも読めないチンパンはIQ測定不能だね
937132人目の素数さん
2021/08/29(日) 13:31:24.27ID:4nTsoywt
1ヶ月で後醍醐天皇の年収くらい
938132人目の素数さん
2021/08/29(日) 15:04:46.56ID:RdaBy3OD
この世は仮想現実です
939132人目の素数さん
2021/08/29(日) 17:15:57.60ID:RdaBy3OD
知能低いほうがモテる。
知能高いと童貞が多い。
940イナ ◆/7jUdUKiSM
2021/08/29(日) 17:52:35.69ID:xS8yO+BZ
>>910
毎日ビチビチやで検便ができない。
941132人目の素数さん
2021/08/30(月) 14:59:03.01ID:KWWGDWwZ
自我は存在しない。
942132人目の素数さん
2021/08/30(月) 15:17:17.05ID:KWWGDWwZ
全ては空です
943132人目の素数さん
2021/08/30(月) 15:22:32.55ID:edo8nEif
>>941
お前にはな。
944132人目の素数さん
2021/08/30(月) 16:43:50.51ID:KWWGDWwZ
諸法無我

無我の境地になりなさいませ
945132人目の素数さん
2021/08/30(月) 17:05:21.92ID:edo8nEif
>>944
空即是色、色即是空

形のない物は形ある物の同類であり、
また、形ある物も形のない物と同類である。

しかし、これを理性ではなく情緒で捉えることが
出来るものは未だ少ない。

私は悟空。
現世で空を悟る1人、有限必滅の二本足の生き物です。
946132人目の素数さん
2021/08/30(月) 19:11:01.31ID:TybZLNGB
デモクリトスの原子論は
この世の全ては目に見えない構成要素(原子)の離合集散であり
神など存在せず、意識も原子の運動の結果ということだ
今でも過激だと思う奴がいるよな
947もよもと
2021/08/30(月) 21:07:29.82ID:eJrlt6/W
∫√xdx=2/3x^(3/2)+Cを使って∫√(1-x^2)dxの値を求めよ ∫[0→1]
948132人目の素数さん
2021/08/30(月) 21:13:27.25ID:edo8nEif
Youtubeで外人が趣味でやっている
微積分の解説とか見ているけど
わかりやすいし教育的でビビる…。

有理数 f :Q → Q
に於いて微積分を適用する時、
どの法則が使えて、どの法則が破綻してしまうのか…
みたいな実演。

高校の先生がこういうのだったら良かったのに。
949132人目の素数さん
2021/08/30(月) 22:19:13.21ID:B5e1Su+g
ちゃんとスレの目的に合ったカキコミをどうぞ
950132人目の素数さん
2021/08/31(火) 00:49:25.47ID:VP5W8zLZ
先生の状況が問題だろ
951132人目の素数さん
2021/08/31(火) 00:59:28.01ID:y8Wl7aLY
お世話になります。

a、b、x、yを正の整数とします。
a<x、b<yとします。
b/a=y/xが成り立つとき、xとyが互いに素では無い(xとyに約数が存在する)事ってどうやって証明できますか?

例えば25/15は20/12に等しいですけど、25/15をどう(正の整数で)約分しても20/12にはならない事に気付きまして、
「25/15 = 20/12であるが、この式が成り立つからと言って25/15に約数がある事は示せるのか?」みたいな事を考えてみたのがこの質問のきっかけです。
具体的な数字が明示されていればつい目算で「あ、これは約数があるな」と分かってしまいますが、
ブラックボックス化して
「b/a=y/x (a<x、b<y)が成り立つとき、x、yに約数がある事を示せるか?」と考えた時、手も足も出ませんでした・・・

どなたか教えて頂けるとありがたいです。
952132人目の素数さん
2021/08/31(火) 01:29:02.61ID:GsPIvWW/
b・x=a・y≡0 (mod a or b)
953132人目の素数さん
2021/08/31(火) 03:27:17.27ID:k5ZVRW0j
>>786
a(a+1) + 7 = a + (aa+7)
 = a + (2√7)|a| + (|a|-√7)^2
 ≧ a + (2√7)|a|
 = (1+2√7)|a|   (a≧0)
 = (-1+2√7)|a|   (a≦0)

等号成立は a=±√7 のとき。
954132人目の素数さん
2021/08/31(火) 17:18:50.41ID:k5ZVRW0j
>>910
(与式)^2 = {a(a+1) + 7}^2
 = {(a+1/2)^2 + 27/4}^2
 ≧ (27/2)(a+1/2)^2 + (27/4)^2
 = (27/2){a(a+1) + 29/8}

∴ (与式) ≧ √(27/2)・√{(a(a+1)+29/8}  … 双曲線
955132人目の素数さん
2021/08/31(火) 22:26:20.38ID:OIcsJTVh
イナさんは高校物理、化学に興味ないですか?
東大は物理、化学で受けたそうですので。
956132人目の素数さん
2021/09/01(水) 00:14:38.21ID:nIYvHjiS
>>950
Question と Problem の違い
957132人目の素数さん
2021/09/01(水) 00:15:10.53ID:nIYvHjiS
稲作さんもYoutubeで数学の解説やれよ。
おれが見てやるよ。
958132人目の素数さん
2021/09/01(水) 07:06:24.75ID:FaZ6kNRL
>>926
b_{k+1} - b_k = Σ[j=1,k] j/(k(k+1))・(a_{j+1} - a_j),    >>928
a_{k+1} - a_k = (k+1)(b_{k+1} - b_k) - (k-1)(b_k - b_{k-1}),  >>929
Cesaroの和 と云うらしい…
959132人目の素数さん
2021/09/01(水) 10:27:28.94ID:FaZ6kNRL
>>910
{(与式) -27/4 -1/2}^2
 = {(a+1/2)^2 - 1/2}^2
 ≧ (1/2)^2 - (a+1/2)^2,

∴ (与式) ≦ 27/4 + 1/2 - √{(1/2)^2 - (a+1/2)^2} … 円
960イナ ◆/7jUdUKiSM
2021/09/01(水) 10:48:46.35ID:HJtcWRo6
>>940
燃えかすなんか残りやしない。真っ白な灰だけだ。
歯石だどうした。真っ白になるまで磨いてやるよ。
961 【末吉】
2021/09/01(水) 10:52:48.04ID:HJtcWRo6
>>960訂正。
燃えかすなんか残りやしない。真っ白な灰だけだ。
歯石がどうした。真っ白になるまで磨くだけだ。
962132人目の素数さん
2021/09/01(水) 13:09:18.74ID:ld40Rcv/
>>951
素因数分解すれば分かるんじゃね?
963132人目の素数さん
2021/09/01(水) 13:26:48.00ID:1rsQY6Y+
原点中心、半径rの円の内部に含まれる格子点の数って求まりますか?
964132人目の素数さん
2021/09/01(水) 15:02:39.74ID:ztlAzOa/
Vinogradov お薦め
965132人目の素数さん
2021/09/01(水) 17:13:19.02ID:ld40Rcv/
>>963
根気よくやれば求まるだろ
966132人目の素数さん
2021/09/01(水) 19:14:26.48ID:ztlAzOa/
ヴィノグラードフ 整数論入門
第2章 問 22 a, b
zetaが出てくる
楽しいぞ
967イナ ◆/7jUdUKiSM
2021/09/02(木) 01:29:10.55ID:3i+bMlrx
>>961
>>963
4r^2-4r+5はかなりいい値かな。
968132人目の素数さん
2021/09/02(木) 07:49:39.51ID:V7a56bC9
原始ピタゴラス数を等差数列の和の公式で表すとどうなりますか?
初項を任意の奇数として公差2となる数であり、かつ初項1公差2として表せることはわかりますが。
969132人目の素数さん
2021/09/02(木) 19:36:53.29ID:bBZEpnhM
>>963
格子点(m,n)の領地を { (x,y) | m-1/2<x<m+1/2, n-1/2<y<n+1/2} とする。
半径 r+1/√2 の円は、円の内部にある格子点の領地を含む。
半径 r-1/√2 の円は、円の内部にある格子点の領地に含まれる。
 π(r-1/√2)^2 < f(r) < π(r+1/√2)^2,
970132人目の素数さん
2021/09/02(木) 20:08:41.46ID:bBZEpnhM
実際は f(r) = πr^2 + O(√r) ぐらいに収まる?
971132人目の素数さん
2021/09/03(金) 04:17:13.06ID:CoZKBbJf
>>963
ひたすら、作図して数える
高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚

rを変化させてグラフ化
高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚

原点を通る多次線形回帰して係数を求めると3次の時がAICが最低になってその係数は
lm(formula = y ~ 0 + I(x) + I(x^2) + I(x^3))

Coefficients:
I(x) I(x^2) I(x^3)
-8.322e-01 3.152e+00 -5.151e-05
972132人目の素数さん
2021/09/03(金) 06:31:55.05ID:CoZKBbJf
原点中心、半径rの球の内部に含まれる格子点の数をグラフ化
高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚
線形回帰すると3次がAICが最低で係数は
Coefficients:
x I(x^2) I(x^3)
-8.2854 0.3061 4.1730
973132人目の素数さん
2021/09/03(金) 06:51:40.90ID:CoZKBbJf
>>971
描画するのはやや面倒だが
数えるだけなら可読性を無視すれば1行で終わり。(R言語ver4.10)
f=\(r) expand.grid(-floor(r):floor(r),-floor(r):floor(r)) |> apply(1,\(x)sum(x^2)<r^2) |> sum()

> f(12.3)
[1] 481
> f(100)
[1] 31397

やっぱり、道具は使えた方がいいな。
根気がなくても答がでてくる。
尻を拭くにはトイレットペーパーを使う。素手で拭くのが好きな輩もいるらしいが。
974132人目の素数さん
2021/09/03(金) 09:02:52.36ID:qMlF8lps
>>973
尿瓶よく読めな

尿瓶によると
「道具があれば使うのが文明人。」
らしいので、マラソンに自動車で参加するのが尿瓶の言うところの文明人ということだろ?
我々が言っているのは、
「ここは数学板だよ、臨床の話したけれ別スレ行ってね」
ということであって、道具を使うなとは一言も言っていない
975132人目の素数さん
2021/09/04(土) 09:12:07.35ID:HGuBdRDo
>>970
r=10,  f(r) = 317 = πr^2 + 0.898√r,
r=10^2, f(r) = 31417 = πr^2 + 0.107√r,
r=10^3, f(r) = 3141549 = πr^2 - 1.38√r,
r=10^4, f(r) = 314159053 = πr^2 - 2.12√r,
r=10^5, f(r) = 31415925457 = πr^2 - 3.41√r,

 (距離rの格子点も含めた)
976132人目の素数さん
2021/09/04(土) 09:19:10.25ID:+E6Ewd2b
線形回帰で3次の係数?
977132人目の素数さん
2021/09/04(土) 12:15:18.09ID:+jQLDx92
cosA+cosB+cosC=1となる三角形ABCはありますか?
978132人目の素数さん
2021/09/04(土) 12:23:47.03ID:sYiJYxQ4
ありますありませんそれがもんだいです
979132人目の素数さん
2021/09/04(土) 13:14:01.26ID:vDttfE0a
cosA+cosB+cosC=4sin(A/2)sin(B/2)sin(C/2)+1>1
980132人目の素数さん
2021/09/04(土) 15:45:33.30ID:HGuBdRDo
第二余弦定理より
cos(A) + cos(B) + cos(C) -1
 = (bb+cc-aa)/(2bc) + (cc+aa-bb)/(2ca) + (aa+bb-cc)/(2ab) -1
 = {a(bb+cc-aa) + b(cc+aa-bb) + c(aa+bb-cc) - 2abc}/(2abc)
 = (a+b-c)(b+c-a)(c+a-b)/(2abc)
 = 4sin(A/2)sin(B/2)sin(C/2),

*) 正弦定理
 a = 2R sin(A),
 b = 2R sin(B),
 c = 2R sin(C),

 a+b-c = 8R sin(A/2)sin(B/2)cos(C/2),
 b+c-a = 8R cos(A/2)sin(B/2)sin(C/2),
 c+a-b = 8R sin(A/2)cos(B/2)sin(C/2),
を使った。
981132人目の素数さん
2021/09/04(土) 16:18:40.44ID:HGuBdRDo
和積公式2回で
 cos(A) + cos(B) + cos(C) - 1
 = 2sin((A+b)/2)cos((A-B)/2) - 2{sin(C/2)}^2
 = 2sin(C/2){cos((A-B)/2) - cos((A+B)/2)}
 = 4sin(C/2) sin(A/2)sin(B/2),

ところで、そろそろ次スレを…
982132人目の素数さん
2021/09/04(土) 21:07:46.54ID:HGuBdRDo
 cos(A) + cos(B) + cos(C) - 1
 = 2cos((A+B)/2)cos((A-B)/2) - 2{sin(C/2)}^2
 = 2cos((π-C)/2)cos((A-B)/2) - 2sin(C/2)cos((π-C)/2)
 = 2sin(C/2){cos((A-B)/2) - cos((A+B)/2)}
 = 4sin(C/2) sin(A/2)sin(B/2),
983132人目の素数さん
2021/09/04(土) 22:28:34.84ID:kh1/oauX
高校過去問の大問1辺りから因数分解の問題みつくろっくれ
984132人目の素数さん
2021/09/04(土) 22:49:05.01ID:PHoiHetT
a^2=3b+2をみたす整数abは存在しないことを背理法を用いて示せ
ただし、すべての整数nは3k 3k+1  3k+2のいずれかで表せることを用いてもよい

国立のaoの過去問で、問題しか公開されていないのですが、わかりません。
なんとなく、式を片方にまとめて、
a,bにnをすべてを代入していくしかないのかなとは思ったのですが、解き方を教えていただけるとありがたいです。
985132人目の素数さん
2021/09/04(土) 22:51:02.23ID:sYiJYxQ4
ぼくにもわかりません。ぱす
986132人目の素数さん
2021/09/05(日) 00:01:41.74ID:CKmnKcIs
>>984
a, b, k すべて整数。

a^2 = 3b + 2 とは
日本語でいうと
「a^2 の値は3の倍数で割り切れない」 ってこと。

aを3の倍数で割り切れる数 3k とすると
a = 3k とおける、 すると 式 は 9k^2 = 3b + 2
左辺 を割ると 3k^2 という整数を得る、
いっぽう、右辺は b+ 2/3 となり整数にならない。
よって aが3の倍数の時、これをみたす整数 b は存在しない。

同じように
aを3の倍数で割って1余る数 3k+1 とすると
a = 3k+1 として…

aを3の倍数で割って2余る数 3k+2 とすると
a = 3k+2 として…

以上より、 a は 3k, 3k+1, 3k+2 と全ての整数において
式を満たすような整数 b は存在しない。
したがって式を満たす整数 a,b は存在しない。
987132人目の素数さん
2021/09/05(日) 00:11:59.63ID:CKmnKcIs
>>986
40過ぎた初老だけど
アタシまだまだいけるじゃん。

いまから塾講師に転職しようかしら。
988イナ ◆/7jUdUKiSM
2021/09/05(日) 01:52:13.41ID:Cde+LkNR
>>967
>>984
a^2=3b+2をみたす整数a,bが存在すると仮定すると、
a=3kのときa^2=9k^2
3b=9k^2-2
b=3k^2-2/3=(3k^2-1)+1/3
a=3k+1のときa^2=9k^2+6k+1
3b=9k^2+6k-1
b=3k^2+2k-1/3
a=3k+2のときa^2=3k^2+12k+4
3b=9k^2+12k+3-1
b=3k^2+4k+1-1/3
すべてのaに対してbは整数ではない。
∴矛盾。
背理法によりa^2=3b+2をみたすa,bは存在しない。
989132人目の素数さん
2021/09/05(日) 02:16:55.12ID:xdBB007I
整数の2乗は3で割り切れる数か、3で割ると1余る数になるかのどちらかであることをいうだけ。
990132人目の素数さん
2021/09/05(日) 02:39:39.42ID:HFxHmzMl
a^2(a^2-1)=(3b+2)(3b+1)
a・a(a-1)(a+1)=3(3b^2+3b)+2
991132人目の素数さん
2021/09/05(日) 02:50:23.21ID:x+tlQ3Kw
p,q,rは自然数で、p,qは互いに素、qは奇数とするとき、(2p)^4+q^4=r^2を満たすp,qは存在しないことを無限降下法を用いて示せ。
992132人目の素数さん
2021/09/05(日) 09:08:17.34ID:4fXpBOSA
ありがとうございました!
993132人目の素数さん
2021/09/05(日) 13:45:07.07ID:LDbpAA38
>>990
a(a-1)(a+1) は6で割り切れる。
9b(b+1) + 2 は18で割ると2余る。

〔使用例〕 方程式
 xx - 3yy = -1       (74)
は一般には整数解をもたない。
A.O.ゲリファント「方程式の整数解」東京図書 数学新書5 (1960)
 銀林 浩 訳  p.56-57 例

>>991
前掲書 p.71-75 定理4.
994132人目の素数さん
2021/09/05(日) 14:32:08.73ID:CKmnKcIs
>>986
期末試験のお手本のような回答をしたのに
誰もお礼を言ってくれない…
アタシっていつもこう… ( '‘ω‘)
995132人目の素数さん
2021/09/05(日) 14:33:38.65ID:CKmnKcIs
高校数学の質問とか
答えていると
己が賢くなったかのように錯覚するよな
このような驕りが湧いてこないように気をつけないといけない


ち、ちなみに謙虚な神戸大卒TOEIC700です… ( '‘ω‘)
996132人目の素数さん
2021/09/05(日) 14:35:22.64ID:0ZEt3Gm+
キモいのが湧いてきた
997132人目の素数さん
2021/09/05(日) 14:38:39.29ID:bWhkkfHo
合同式使えば瞬殺だろ
998132人目の素数さん 홧팅 대한민국!!
2021/09/05(日) 15:02:31.29ID:WtBG6gHf
次スレ
高校数学の質問スレ Part414
http://2chb.net/r/math/1630821726/
999132人目の素数さん
2021/09/05(日) 20:22:25.07ID:Sb9IQyJv
999 = 998 + 001

998001 = 999²
1000132人目の素数さん
2021/09/05(日) 21:00:21.90ID:9UcnawOs
1001ゲト
10011001
Over 1000Thread
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 75日 1時間 21分 57秒
10021002
Over 1000Thread
5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。
運営にご協力お願いいたします。


───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────

会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。

▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/

▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。




lud20250217090546ca
このスレへの固定リンク: http://5chb.net/r/math/1624358305/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

TOPへ TOPへ  

このエントリをはてなブックマークに追加現在登録者数177 ブックマークへ


全掲示板一覧 この掲示板へ 人気スレ | Youtube 動画 >50 >100 >200 >300 >500 >1000枚 新着画像

 ↓「高校数学の質問スレ Part413 YouTube動画>12本 ->画像>13枚 」を見た人も見ています:
高校数学の質問スレ Part438
高校数学の質問スレ Part431
高校数学の質問スレ Part411
高校数学の質問スレ Part434
高校数学の質問スレ Part416
高校数学の質問スレ Part438
高校数学の質問スレ Part422
高校数学の質問スレ Part425
高校数学の質問スレ Part417
高校数学の質問スレ Part424
高校数学の質問スレ Part426
高校数学の質問スレ Part439
高校数学の質問スレ Part441
高校数学の質問スレ Part432
高校数学の質問スレ Part421
高校数学の質問スレ Part428
高校数学の質問スレ Part423
高校数学の質問スレ Part427
高校数学の質問スレPart409
高校数学の質問スレPart408
高校数学の質問スレPart403
高校数学の質問スレPart406
高校数学の質問スレPart403
高校数学の質問スレPart406
高校数学の質問スレPart402
高校数学の質問スレPart401
高校数学の質問スレPart407
高校数学の質問スレPart409
高校数学の質問スレPart404
高校数学の質問スレPart399
高校数学の質問スレPart398
高校数学の質問スレPart398
高校数学の質問スレPart397
【旭】高校数学の質問スレPart398
【あさひ】高校数学の質問スレPart397
高校数学の質問スレ(医者・東大卒禁止) Part438
高校数学の質問スレ(医者・東大卒専用) Part438 (979)
高校数学の質問スレ(国立医・東大合格者専用) Part439 (139)
高校受験。数学の質問。
数学の質問スレ
大学数学の質問スレ Part1
面白い高校数学の問題貼ってくスレ
高校数学レベルの自作問題にチャレンジするスレ
春から私文のワイに超絶優しくわかりやすい高校数学の参考書を教えるスレ
高校数学は暗記科目
高校数学で質問があります
高校数学の間違いを指摘するスレ
高校数学のベクトルは何なの?
高校数学で最も難しい分野は何?
中学高校数学からやり直したい
いい感じの高校受験の数学の問題をくれ
高校数学の解放網羅系の参考書について
高校数学で最も難しい単元とは?
高校数学 この問題解けたらアイス奢る
高校数学の「二次曲線」って重要なの?
高校数学の参考書ってなにがいい?
大学数学を極めたら高校で無双できるのか?
中学数学を100とした場合の高校数学の難易度
中学・高校数学および数学教育について
今の高校数学のカリキュラムは理想に近い
高校数学に「データの分析」は必要?
文系卒おじさんだけど高校数学からやりなおす

人気検索: JC 鈴木沙彩ファンクラブ の高校生 熟女 jb アウあうロリ アウロリ 11 Young nude girl? 繧ケ繝代ャ繝? 女子小学生マンコ Olivia model
21:42:19 up 97 days, 22:41, 0 users, load average: 11.75, 11.14, 10.98

in 0.093299150466919 sec @0.093299150466919@0b7 on 072410